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Abstract 

Estimates from the World Wind Energy Association assert that world total wind power 

installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover, 

according to their predictions, by the end of 2010 global wind power capacity will reach 190 

GW. Since electricity is a unique commodity, this remarkable expansion brings forward 

several key economic questions regarding the integration of significant amount of wind 

power capacity into deregulated electricity markets. 

The overall dissertation objective is to develop a comprehensive theoretical framework that 

enables the modeling of the performance and outcome of wind-integrated electricity markets. 

This is relevant because the state of knowledge of modeling electricity markets is insufficient 

for the purpose of wind power considerations. First, there is a need to decide about a 

consistent representation of deregulated electricity markets. Surprisingly, the related body of 

literature does not agree on the very economic basics of modeling electricity markets. That is 

important since we need to capture the fundamentals of electricity markets before we 

introduce wind power to our study. For example, the structure of the electric industry is a 

key. If market power is present, the integration of wind power has large consequences on 

welfare distribution. Since wind power uncertainty changes the dynamics of information it 

also impacts the ability to manipulate market prices. This is because the quantity supplied by 

wind energy is not a decision variable. Second, the intermittent spatial nature of wind over a 

geographical region is important because the market value of wind power capacity is derived 
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from its statistical properties. Once integrated into the market, the distribution of wind will 

impact the price of electricity produced from conventional sources of energy. Third, although 

wind power forecasting has improved in recent years, at the time of trading short-term 

electricity forwards, forecasting precision is still low. Therefore, it is crucial that the 

uncertainty in forecasting wind power is considered when modeling trading behavior. 

Our theoretical framework is based on finding a symmetric Cournot-Nash equilibrium in 

double-sided auctions in both forwards and spot electricity markets. The theoretical 

framework allows for the first time, to the best of our knowledge, a model of electricity 

markets that explain two main empirical findings; the existence of forwards premium and 

spot market mark-ups. That is a significant contribution since so far forward premiums have 

been explained exclusively by the assumption of risk-averse behavior while spot mark-ups 

are the outcome of the body of literature assuming oligopolistic competition. 

In the next step, we extend the theoretical framework to account for deregulated electricity 

markets with wind power. Modeling a wind-integrated electricity market allows us to analyze 

market outcomes with respect to three main factors; the introduction of uncertainty from the 

supply side, ownership of wind power capacity and the geographical diversification of wind 

power capacity. 

For the purpose of modeling trade in electricity forwards one should simulate the information 

agents have regarding future availability of aggregate wind power. This is particularly 

important for modeling accurately traders’ ability to predict the spot price distribution. We 

develop a novel numerical methodology for the simulation of the conditional distribution of 

regional wind power at the time of trading short-term electricity forwards. 
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Finally, we put the theoretical framework and the numerical methodology developed in this 

study to work by providing a detailed computational experiment examining electricity market 

outcomes for a particular expansion path of wind power capacity. 
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Chapter 1: Introduction and literature review 

 

Problem statement 

Wind power has been recently established as a major source of renewable energy. The rapid 

increase in wind power generation worldwide introduces two central challenges to the 

electric industry. One is the physical aspect of connecting a large amount of intermittent new 

power capacity to the grid.  The other is how to incorporate trade in wind power and how it 

will affect the price of electricity from other energy sources in a deregulated market. 

Technically, transmission system planners seem to be able to identify and to take steps to 

relieve bottlenecks to integration of wind power such that system reliability is not 

compromised. In contrast, the impact of wind power on electricity market dynamics and 

welfare distribution has not yet been studied comprehensively. A better understanding of the 

new economic environment of wind-integrated electricity markets is essential for future 

energy policy designs. 

Public good aspects such as reducing dependency on fossil fuel and reductions in greenhouse 

gas emissions are often the grounds for governments to support renewable energy. Yet, when 

the percentage of renewable energy and particularly that of wind power increases, the impact 

on electricity markets should be considered as well. Therefore, a fundamental question is 

how market participants respond to an increasing supply of intermittent energy source. In 

markets that make use of forward contracts as their primary pricing tool, how does increased 
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wind power penetration affect trading behavior? It is therefore necessary to investigate how 

the entire electricity market is affected, rather than just the economics of wind power, in 

order to analyze the value of wind power to producers, consumers and the subsequent 

welfare effects. 

At present, wholesale electricity markets make use of the uniform price auction mechanism 

to administer trade in electricity. This mechanism promotes efficiency by encouraging power 

producers and consumers to bid their marginal costs and marginal willingness to pay 

respectively. Wind power producers on the other hand, are not obliged to do so, and typically 

do not participate in these markets. Instead, wind power is utilized whenever it is available in 

real-time and wind power producers are compensated at the settled uniform auction price. 

This arrangement may perform well where wind power has a small market share, but for 

higher penetration rates it may cause market distortions and deviations from efficient 

allocation of energy resources. Moreover, wind power is unique because its marginal cost is 

close to zero, thus its revenues are extremely sensitive to how and when electricity is traded. 

Therefore, investigating the performances of electricity markets in conjunction with the 

expansion of wind power capacity is a key research question.  

 

Liberalized electricity markets 

For over a decade electric industries worldwide have transitioned from a regulated to a more 

liberalized structure. Under a monopoly regime, vertically integrated companies control the 

generation, transmission and distribution of electricity in a broad geographical area.  A 

regulator would guaranty the monopoly a fixed rate per unit of service in an attempt to 
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deduce (and not overestimate) its average cost. For many years electricity generation and 

distribution have been operated as natural monopolies due to economies of scale. However, 

recent technological advances in power generation have weakened the belief that the 

advantages of economies of scale outweigh the potential benefits of a liberalized market.  

In a deregulated electricity market, a monopoly utility is replaced by several independent 

entities, including independent power producers (IPPs), load serving entities (LSEs) and a 

system operator. IPPs are generation companies that produce and sell power in the 

deregulated electricity markets. LSEs are a typical buyer in those markets. These firms must 

purchase electricity to meet real-time demand of their consumers. The system operator’s role 

is to accommodate the unique features of electricity. Two key technical peculiarities of 

electricity make it a unique commodity. First, it cannot be stored economically. Thus any 

unconsumed quantity is lost. Second, electricity requires a transmission system which means 

that some degree of coordination and/or regulation by a system operator needs to be in place. 

Examples include independent system operators (ISO) or regional transmission organizations 

(RTO)1. In addition, electricity is an essential commodity. Thus, there are large welfare 

losses from any failure in the market from inadequate supplies. Power systems need to 

operate reliably at all times and timely investments in capacity must be made to meet 

growing demand. The function of the system operator is a key in any market structure 

implementation. For that reason, deregulation in electric industries has been limited to power 

generation and retailing. More about the challenges and experiences related to the transition 

to liberalized market itself are discussed elsewhere (Griffin and Puller 2005). 

                                                           

1 ISOs and RTOs are independent and nonprofit organizations which have as their primary role managing power 
transmissions, reliability and efficiency of the power system. 
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Wholesale electricity markets 

In a liberalized electricity sector a competitive wholesale market is developed and operated 

by the system operator or some other entity that does not otherwise participate in the market 

for electricity.  The main functions of electricity exchanges are to accommodate trade and 

balance real-time operations. Short term electricity trade is usually organized as two-

settlement processes: the day-ahead market and the real-time or spot markets. Market 

participants submit their bids and market price is determined according to the type of auction 

system adopted by the market administrator. In the U.S. and most electricity exchanges a 

uniform pricing auction is implemented in which the price of the marginal traded unit of 

electricity determines the market price. This mechanism is considered competitive as long as 

the number of market participants is large enough to eliminate the possibility of market 

power and strategic biddings. Under this circumstance the market price represents an 

efficient allocation of power generator resources. Unfortunately, this is usually not the case. 

The electric industry is often concentrated and the unique characteristics of electricity 

commodity contribute to the ability of generators to exercise market power. This is mainly 

due to an inelastic demand and the fact that electricity cannot be stored economically. 

There are several other commodities that are traded in the deregulated electricity markets 

including financial transmission rights, reserve capacity and ancillary services. We discuss 

these only briefly because they are not directly related to our research problem. Financial 

transmission rights are traded to hedge the cost component of electricity prices which is 

caused by congestion of transmission lines. The market for reserved capacity is where firms 
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compete for investments in new power generation to accommodate future increase in 

demand. Ancillary services are traded as complementary commodities to spot power. The 

purpose of these services is to help maintain the security and the quality of the supply of 

electricity in real-time. The main categories of ancillary services traded are frequency and 

voltage control and backup and restoration capacity. Ancillary power that are traded are 

reserve power of different types, reactive power and backup power. The markets for ancillary 

services often consist of auctions but are fundamentally different from the spot market. 

Ancillary services are provided by different generators than those participating in the spot 

market. Also, most of the time ancillary power is not generated, but when it is, the cost of 

input fuel is relatively high and efficiency level is extremely low.  

The exchanges play a significant role in promoting the competitiveness of the market. As a 

coordination device, the exchanges publish real-time market information, weather forecasts, 

load forecasts and recently there is a growing trend to adopt central wind forecast systems as 

well. These transparencies are crucial for efficient decision making in all traded electricity 

goods. 

 

Modeling electricity prices  

Models of how electricity is priced are used to value generation assets, financial transmission 

rights, and the pricing of electricity derivatives. This section discusses the different 

approaches that have been used to model electricity prices and reviews recent quantitative 

methods. Electricity prices have been modeled as either stochastic processes or as arising 

from the interaction of fundamental supply and demand curves. The most frequent approach 
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used is to model electricity prices as a stochastic process.  In this approach historical price 

data are used to infer the properties of future electricity prices. The second class of models 

attempts to model fundamental attributes of electricity supply and demand to infer future 

price behavior. This class includes engineering and equilibrium based models. 

 

Stochastic approach 

Pure stochastic models include continuous-time diffusion models and discrete-time 

autoregressive models. While both focus on modeling the movement of prices, time series 

models may also include some features of the market. Neither offers much insight into the 

fundamental economic forces and market operation that affect prices. Stochastic models are 

most valuable for pricing derivatives in electricity markets where the stochastic properties of 

prices are the main interest. 

 

Diffusion models 

A typical approach to modeling prices is to assume that they follow Geometric Brownian 

Motion process as follows:  

 �	
�� � 
��� � �
���� (1.1) 

where 
� is the price of electricity at time �,  is a drift rate, � is volatility and �� is a 

standard Brownian motion process increment. 

Taking the natural log of 
� guarantees non-negative prices and implies that price is log 

normally distributed if the movement in price is normally distributed (Lucia and Schwartz 
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2002; Tseng and Barz 2002). The price movement is often formulated as a mean reversion 

processes by defining the drift parameter as:  

  � �	�� � ��
�� (1.2) 

where � is a mean reversion parameter, often referred as the degree of storability of the 

commodity under investigation. For a storable commodity, this parameter will be small. But 

it will be large in the case of electricity because electricity is quite costly to store. The 

parameter  �� captures the cyclical feature of seasonal fluctuations (Denton, et al. 2003). 

Although very simple and convenient, these models fail to replicate spikes in electricity spot 

markets. The simplest way to overcome this weakness is to introduce a jump component 

within this framework (Clewlow and Strickland 2000; Knittel and Roberts 2005; Cartea and 

Figueroa 2005). Then the model becomes   

 �	
�� � �	�� � ��
��
��� � �
���� � 
���� (1.3) 

where �� is a Poisson process.  

The extended model generates price spikes but fails to mimic the dynamics of their 

occurrence successfully. The Poisson component introduces an isolated and independent 

jump. In reality, jumps in electricity prices behave differently. Spikes tend to occur in a 

cyclical manner and not as a purely random event with a probability of occurrence. Also, in 

reality a sudden spike in electricity prices is often followed by a rapid price decrease caused 

by generators being turned on to meet the temporary shortage.  Excess supply often follows 

immediately. 
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The Markov regime switching model is an approach that replicates spikes in a more realistic 

fashion (Elliott, Sick and Stein 2003; Huisman and Mahieu 2003). In this model price 

movements are separated into ‘normal’ periods as in equation (1.1) and ‘spiky’ periods 

described by 

 �	
�� � ��
��� � �
���� . (1.4) 

While equation (1.1) characterizes the price movement in ‘normal’ periods, equation (1.4) 

employs �� as oppose to � to describe the drift in ‘spiky’ periods. The switch in this case is 

governed by a standard 2 by 2 conditional probability matrix. 

Other diffusion models were constructed specifically to accommodate the particular nature of 

electricity. These are more mathematically involved and go beyond ordinary commodity 

price modeling (e.g. Deng 2000, and Geman and Roncoroni 2006). Their mathematical 

description is superior and offer a better fit for electricity price behavior. 

 

Time series models 

Generalized Autoregressive Conditional Heteroskedastic (GARCH) models are the 

workhorse of discrete time models of electricity prices (Byström 2005; Garcia, et al. 2005; 

Goto and Karolyi 2004; Longstaff and Wang 2004; Mount, Ning and Cai 2006). The classic 

model is defined as  

 
� � c � � ��
��� ��
�� � !"ε��" � ε$

%
&�  (1.5) 

where 
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 '� � (� )⁄ +�,    +�~..�	0,1� 

and  (� � 1 � ∑ 3"'��") �4"� ∑ 5"(���6��   . (1.6) 

Imposing the required stationarity and non-negativity conditions guaranty mean reversion in 

electricity prices. Volatility persistence is generated by the structure of the error term '�; 
current volatility is explained partially by past volatility. Applications of the model often 

incorporate variables for seasonal effects, weekend/weekday and holiday’s effects, time of 

the day effects, jumps in variance and variance clustering. 

 

Fundamental approach 

The fundamental approach for modeling electricity prices accounts for the costs of supplying 

electricity, the demand for electricity and the behavior of electricity market participants. 

While both engineers and economists use this approach, their purpose and thereby the focus 

and methodology is quite different. 

 

Engineering based models 

The engineering approach attempts to include all relevant forces in power generation to 

estimate the nominal cost of electricity production. Major input data considered are 

characteristics of technologies, input prices, physical and power security constraints, 

transmission system operation, congestion issues, and energy demand. Then, particular 

figures are utilized in different scenarios to assign the computed cost of production for given 

conditions. This approach refers mainly to the algorithm developed and implemented by a 



www.manaraa.com

10 

 

 

 

system operator (i.e. ISO or RTO) but may also be employed for studying the aggregate 

industry profile (Huang and Wu 2008) or adoption of new technology (Bakos 2002). 

 

Equilibrium price models  

Equilibrium models examine the relationship among economic drivers in market operation to 

describe market equilibrium and prices in particular. Behavior of market participants such as 

IPPs and LSEs are crucial for understanding the evolution of market prices. Here, the models 

describe the main properties of the market instead of stating the actual engineering figures 

explicitly. For instance, representing production cost as a convex function can incorporate the 

fundamental cost structure faced by power generators. Assuming 8 identical producers, 

Bessembinder and Lemmon (2002) introduced the following cost function:  

 9:� � ; � <= 	>?��@ , . � 1 … 8 (1.7) 

where ; represents a fixed cost, >?� is the volume produced by producer ., B is a constant 

greater or equal to two and C is a parameter. This simple representation implies that the 

industry is characterized by increasing marginal cost. It is realistic because producers employ 

different technologies types according to >?� and the need to meet demand. Employing 

economic theory and market data (to calibrate parameters) provides a transparent framework 

for further economic analysis. An extension of the above cost function was proposed by 

Suenaga and Williams (2005). They replaced the parameter C with stochastic fuel prices 

which enabled them to explore the input-output price relationships in power generating. 

Finding equilibrium electricity prices requires consideration of demand (Barlow 2002; 
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Vehviläinen and Pyykkönen 2005). In these models demand is characterized as stochastic 

while supply is not. In Barlow (2002) prices are determined by the interaction of consumers’ 

willingness to pay and an unspecified, fully responsive, supply side. In Vehviläinen and 

Pyykkönen (2005) demand is completely inelastic and prices are determined by the marginal 

production cost of the marginal generating unit.  

A recent study explains the evolution of prices by defining both demand and capacity (D and 

:, respectively) as state variables (Cartea and Villaplana 2008). The chosen spot price 

formula is 

 
� � EFGHIJK and �, E L 0, 5 M 0 . (1.8) 

Imposing the signs of the parameters guarantees that prices increase with demand and 

decrease with capacity. The state variables are composed from deterministic and stochastic 

components: 

 N� � O"	�� � P�" , Q � :, D . (1.9) 

The diffusion process is described as mean reverting and follows standard Brownian motion:  

 �P�" � �R"P�"�� � �"�S�" . (1.10) 

The model links demand and capacity with spot prices in a technical way and does not offer 

any fundamental economic interpretation. The model assumes that the stochastic parts of the 

state variables are independent which implies that traders do not respond to price changes. 

This assumption contradicts the basis of a competitive market operation. LSEs are contracted 

to supply any realized demand. Thus they are not price responsive. However, IPPs are able to 

respond to market prices by making capacity adjustments. For example, in the long run 
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investments are made to meet anticipated electricity demand growth. The short run response 

is characterized by frequent startups and shut downs of peaking plants to accommodate load 

spikes. 

 

Modeling oligopoly equilibrium 

Empirical studies examining the performances of deregulated electricity markets find high 

price-cost margins, which suggest the presence of market power in these markets (e.g. 

Borenstein and Bushnell 1999, Borenstein, Bushnell and Wolak 2002, Green 1999, Mansur 

2008, Puller 2007 and Wolfram 1999). If power producers are able to exercise market power, 

models of oligopoly pricing should be employed instead of those assuming perfectly 

competitive behavior. Natural candidates for a non-cooperative game are the Cournot and the 

Bertrand models. In the former firms compete in quantities while the latter describes 

competition in prices. In the Bertrand equilibrium the firm that prices its output below its 

rival’s will be the only supplier of the good in the market. This framework is not suitable for 

modeling electricity market since the supposition that a single firm in a deregulated 

electricity market can supply overall load is unlikely. In addition, the cost function of 

generating power is known to be convex thus negating the equilibrium characterized by a 

Bertrand model.   

An IPP acting as a Cournot competitor chooses its own quantity taking the quantities of its 

rivals as given. In doing so, each IPP is aware of the impact of its own production level on 

the market price. Nash equilibrium in this game is reached where all IPPs simultaneously 

choose profit maximizing quantities. In the case of electricity markets the outcome of 
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applying a standard Cournot model usually tends to overestimate market power. First, the 

Cournot is essentially a static short-run model which does not consider entry and exit of 

firms. Yet, electricity markets are characterized by repeated games at which in each hour spot 

market is being cleared. Since supernormal profits encourage the entry of new firms, 

incumbents may not be able to exercise market power up to the Cournot equilibrium. 

Secondly, the standard Cournot framework does not consider forward contracts. This is 

limiting since forward contracts are the main pricing tool in electricity markets. Moreover, 

Allaz and Vila (1993) show that the presence of contracts in a Cournot setting drives 

suppliers to act more competitively in the spot market and move away from the Cournot 

equilibrium.  

Supply Function Equilibrium (SFE) is another oligopolistic modeling approach that is 

frequently being used in studying electricity markets. This is a theoretical framework 

developed by Klemperer and Meyer (1989) and employed for modeling electricity market in 

Green and Newbery (1992) and others. In this single settlement model suppliers bid supply 

curves rather than price-quantity pairs. Since most deregulated markets are governed by 

uniform price auctions, the SFE setting describes actual IPP behavior more closely than the 

Cournot and other models. Unfortunately, the solution of a SFE approach is characterized by 

multiple equilibria. Interestingly, the range of solutions of SFE is bounded between the 

Bertrand outcome from below (the competitive solution) and the static Cournot outcome 

from above. The range of possible equilibrium may be narrowed down by capacity 

constraints, entry and market for contracts (Green 1999; Green and Newbery 1992; Newbery 

1998). Under extreme conditions the SFE model may produce unique equilibrium; this 
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however is very limiting and almost impractical from an applied point of view2. For example, 

as pointed out by Newbery (1998) incorporating an SFE model to account for both forward 

and spot markets will generate double infinity number of equilibria. Similar to the Cornout 

model, this is a considerable downside since spot power is being traded in the two-settlement 

process (day-ahead and a spot market) in most deregulated electricity markets. 

Another shortcoming of the oligopolistic modeling approach is the lack of a realistic 

representation of consumers’ behavior. Both Cournot and SFE models employ a demand 

curve (usually linear) to represent real-time load. Doing so, they fail to describe the 

optimization problem of LSEs. Since LSEs aggregate large number of consumers and 

participate in forward markets, the evolution of demand in each of these markets should be 

accounted for as well. Kian, Cruz and Thomas (2005) proposed a model of double-sided 

auctions for spot power. They develop bidding strategies for IPPs and LSEs in a dynamic 

system. Their study suggests that a double sided auction is a more realistic modeling 

approach. That is because it accounts for the demand side responses to the strategies 

employed by the supply side. As a result, the outcome of the double-sided auction is more 

efficient than a single sided auction. 

An alternative approach to the oligopoly framework is to assume that agents have learning 

capabilities. Sun and Tesfatsion (2007) developed a computational model to examine the 

performance of a wholesale power market. The model is based on strictly buyers and strictly 

sellers of power (i.e. LSEs and IPPs respectively) and a system operator. A dynamic 5-node 

                                                           

2 Sufficient conditions for uniqueness in SFE model are symmetry, unbounded upper support of uncertainty, 
linear demand and marginal costs   
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transmission grid is assumed for concrete illustration. Unlike other economic models, by 

incorporating the power system, Sun and Tesfatsion are able to model locational marginal 

prices. These prices reflect the least cost of meeting additional megawatt demand at a certain 

node. Electricity trading is assumed to take place at the two-settlement process of day-ahead 

and real-time markets. However, the demand side is not studied in Sun and Tesfatsion 

(2007). Instead, it is assumed that LSEs submit electricity demand which is identical to load 

forecasts thus no optimization from their side is considered. The IPPs predict the state of 

the power system to develop strategic biddings. Under this setup, the model shows that if 

power generators have learning capabilities they may exercise their potential market power 

and bid strategically. As a result they obtain higher profits. 

      

Electricity derivatives 

Uncertain demand, non-storability and a time sensitive cost structure of power generation are 

the main sources of the volatility in electricity spot market. The exposure to sometimes-

extreme price volatility can be costly to both LSEs (buyers) and IPPs (sellers). Various 

financial and physical instruments for hedging price risk in electricity markets have been 

developed and implemented. Among these, forwards and futures contracts are the simplest 

and the most popular. Both contracts are an agreement to buy or sell electricity at a specified 

price for a particular delivery period. They differ however in the way they are traded, their 

volume, and in their specificity. Futures contracts are traded in the organized exchanges 

while forwards are traded bilaterally over the counter. Futures are highly standardized 

contracts traded in low volume. Forward contracts are sold as blocks tailored to fit on/off 
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peak load time of any future period at any predetermined location. In the U.S., electricity 

futures contracts are traded currently only in the Minnesota Grain Exchange. Other 

exchanges decided to delist them due to low interest. In Europe, electricity futures contracts 

are traded more frequently.  

Typically, LSEs and IPPs manage a portfolio of electricity derivatives which are being traded 

in different occasions prior to the delivery period in question and according to market 

conditions and updated demand forecasts. Taking a forward position decreases the exposure 

of buyers and sellers to spot market volatility. The next section discusses the role of futures 

and forward contracts in electricity market risk management. A detailed review of a variety 

of electricity derivatives is given by Deng and Oren (2006). 

 

Risk management 

Electricity demand in wholesale electricity markets is represented by LSEs. These firms are 

contractually obligated to meet any volumetric demand of their end-consumers’ at all times. 

Coupled with spot price volatility this demand-fulfillment requirement makes them 

extremely exposed to short run losses. Electricity is a non-storable commodity and as such 

the convenient no-arbitrage approach cannot be applied for hedging its price risk in futures 

markets. Instead, the distribution of electricity prices may be inferred, and then the prices of 

futures contracts (and other electricity derivatives) can be computed to comply with a no-

arbitrage in expectations principle. 
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Power producers would be interested in revenue certainty to allow steady cash flow, enable 

timely investments and preserve firm credit rating and reputation. These circumstances make 

forwards and futures contracts essential devices to control risk for both LSEs and IPPs. The 

demand for future contracts and the evolution of their prices have been studied extensively. 

A conventional starting point for these studies is based on two key assumptions; one is 

related to the behavior of agents in this market and the other is about the stochastic linkage 

between electricity prices and demand. First, the demand for hedging instruments is 

motivated by Markowitz’s portfolio model in that buyers and sellers want to diversify their 

procurements/sales to achieve higher expected utility by trading off mean profits for 

reductions in variance. Then, an assumption about the particular joint distribution of price 

and load follows, and is used to optimize a portfolio. For example, both Woo, Horowitz and 

Karimov (2004), and Oum, Oren and Deng (2006) assume a concave LSE objective function 

and derive an optimal frontier of futures holding. Employing constant absolute risk aversion 

and mean-variance functions, the portfolios represent the optimal tradeoff between 

procurement cost expectation and cost variance. Woo, Horowitz and Karimov exemplified an 

efficient portfolio for the case that overall procurement cost is assumed to be normally 

distributed. Oum, Oren and Deng investigated cases which price and load demonstrate 

bivariate normal or log-normal distributions. Mean-variance objective have been employed 

to construct the corresponding efficient frontier for power producers (Bjorgan, Liu and 

Lawarree 1999). Acknowledging that variance of profits penalizes realizations of over and 

under expected value at the same rate, Paravan, Sheble and Golob (2004) solve the power 

portfolio optimization problem where the variance of profits is replaced by the conditional 

value at risk. That is the expected value of loss given a realization of a certain outcome. A 
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parallel approach for an LSE firm is presented in Woo, Karimov and Horowitz (2004) where 

the objective is to minimize expected procurement cost subject to a cost exposure constraint. 

By imposing exogenous price distributions, the studies above can be viewed as a partial 

equilibrium approach for risk. A general equilibrium modeling of electricity market is rare 

due to the intricate feature of this market. Bessembinder and Lemmon (2002) developed a 

general equilibrium model where both quantity and price of forwards are determined 

endogenously. This study is unique in its effort to describe the complexity of electricity 

market essentials based on classic economic theory. It is considered to be a benchmark for 

economic-based modeling under the assumption of perfectly competitive electricity markets. 

Bessembinder and Lemmon assume that the settled price of a forward contract is based 

mainly on the expectations of the spot market price. Storage and risk related to the nature of 

the traded commodity are generally determinants in forwards markets as well. In the case of 

electricity, storage is economically irrelevant (excluding hydroelectricity), but risk may play 

an important role.  

Start by assuming that both LSEs and IPPs decision making is based on the following mean-

variance objective functions  

 +TU	V�, WCX	V�Y � U	V� � Z2 WCX	V� (1.11) 

where V is profits and the parameter Z is the coefficient of absolute risk aversion. Note that 

this representation is equivalent to assuming that utility is exponential and profits are 

normally distributed.  

The non-hedged profits of a representative IPP and LSE respectively are  
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 V\?? � 
> � 9:	>� and V]^_ � >	
̀ � 
� (1.12) 

where 9: is the total cost defined in equation (1.7), 
 and > are the spot price and realized 

demand respectively. 
̀  is the predetermined fixed retail price per unit of electricity.  

One can show that the optimal forward position for the mean-variance objective function of 

both LSE and IPP can be written as
 

 >a\??,]^_bc � 
c � U	
�ZWCX	
� � :d+eVa\??,]^_b, 
fWCX	
�  . (1.13) 

The first term is driven by the bias of the forward price 
c compare to the expected spot 

price. The second term is the optimal condition for minimizing the variance of profits.  

Solving the model, Bessembinder and Lemmon show that the equilibrium volume and the 

forward price can be written as functions of the first, second and third moments of the 

distribution of the spot price. Next, they establish the result that in general the forward price 

is a biased forecast of the spot price. The risk premium which is defined as the forward 

contract price minus the expected spot price is increasing in the skewness and decreasing in 

the variance of spot price. That is, in peak load periods that are characterized by high 

expected demand and a high variance in demand, the risk premium will be high due to the 

convex nature of generating cost. In lower demand periods, lower skewness pushes risk 

premiums down. 
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Another study provides an empirical analysis based on the theory presented above (Longstaff 

and Wang 2004). Data from the PJM3 electricity market support the predictions of 

Bessembinder and Lemmon and implies that an economic-based model is capable of 

explaining the formation of electricity markets prices. 

 

Electricity from renewable resources 

Diversification of energy sources and climate change mitigation have been the major grounds 

for the growing interest in energy from renewable resources. Higher energy prices coupled 

with technological advances in harvesting renewable energy enhanced this interest. 

Renewable energy resources include wind, solar, geothermal, biomass, hydro4, landfill gas, 

and others. Many countries have introduced mandates for renewable energy. For instance, the 

European Union set an overall binding target of 20% by 2020, though the percentage varies 

greatly within union members. Australia set 20% by the year 2020 as well. In the U.S. 

Renewable Portfolio Standards (RPS) have been established by 25 states and the District of 

Columbia but no national policy has been set. Targets, percentages, timetables, and the 

energy resources to be used vary among states. Targets are specified as percentages of 

overall power generation capacity or as annual energy volumes produced5. Another support 

for renewable energy is given in a form of a tax credit and renewable energy certificates, 

which are granted for generating energy from qualified renewable resources. They are traded 
                                                           

3 PJM Interconnection is a regional transmission organization (RTO) in the U.S. that coordinates the movement 
of wholesale electricity in all or parts of 13 states and the District of Columbia. 
4 Hydroelectric power produced in a pumped-storage facility is usually considered as a non-renewable resource 
as pumping requires energy that comes mainly from fossil fuel generators. 
5 U.S. state level RPS can be accessed at the American Wind Energy Association website at: 
http://www.awea.org/legislative/pdf/State%20RPS%20factsheet%20Nov%202007.pdf 



www.manaraa.com

21 

 

 

 

separately from electricity and can provide a supplementary source of income to producers of 

renewable energy. 

 

Integrating wind power  

Integrating renewable energy into the wholesale electricity market is a challenging task. 

Unlike conventional power units, renewable energy can fluctuate over time because output 

depends on precipitation, radiant energy and air flows which are uncertain by nature. Their 

variable nature means that renewable energy cannot be marketed in the same way that 

conventional power is marketed. We focus here on wind power as its variability makes it the 

most difficult energy resource to integrate into the power system (IRC 2007). In addition, 

U.S. wind power capacity has been rapidly growing as shown in figure 1.  

 

Figure 1: U.S. overall wind power capacity 
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The large increase in wind power shown in figure 1 suggests that it will be useful to better 

understand how wind power will impact the power generation industry. The engineering 

implications of grid connection and reliable transmission of wind power are being studied, 

discussed and improved on an ongoing basis (Jauch, et al. 2005; Söder, et al. 2006). In 

particular, both short run and long run reserve requirements need to be re-evaluated because 

an increasing share of wind power makes quantification of system reserves more complex. 

Short run reserves are used to account for real-time load forecasting errors and generator 

outages. Long run reserve refers to the adequacy of overall power capacity of a region to 

meet demand6. When the share of wind power is small, the overall amount of variability that 

is added to a power system is small. Hence both types of reserve requirements are not 

significantly altered. When wind has a 10% share, the increase in short term reserve is 

estimated in the range of 2-8% of total installed wind power capacity (Holttinen and 

Hirvonen 2005). In terms of overall installed capacity, the capacity credit for wind in low 

penetration rates is equivalent to that of conventional power units but diminishes at higher 

rates. The reason for this is that in low penetration rates the variability of wind power 

production is within the range that short run reserves can handle without further adjustments. 

As wind power share increases, the ability of these reserves to account for possible sudden 

drops of wind power is reduced thus long run reserves have to be added. Moreover, at a 

certain point, capacity credit does not increase with the addition of more wind turbines to the 

region.  

                                                           

6 Capacity calculation of wind power for planning reserve varies greatly. In some regions a fixed proportion of 
15% -20% of turbine’s rated power is used. When applicable, historical data is utilized to compute empirical 
capacity factor based on performances. In other regions the capacity evaluation is based only on peak load 
periods.   
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A study by Doherty and O'Malley (2005) introduce a novel method to compute reserve 

requirements for high shares of wind power capacity regime. The study shows that long term 

capacity adjustments are more substantial relative to the short term requirements. Short term 

reserve requirements are increasing, but they are fairly low because intra hour wind variation 

is small relative to overall load variation. However, categories of reserve that act over longer 

periods of time have to expand with the introduction of more wind power. 

 

Wind forecasting 

Wind power value is strongly influenced by the precision of wind speed forecasting. A high 

quality forecast enables a system operator to schedule wind power to displace conventional 

generators and minimize ancillary services costs. With regard to the operation of electricity 

markets, accurate information about wind power availability promotes efficiency in trade. 

Unfortunately, small wind speed prediction errors are translated into large ones when it 

comes to wind power predictions, as will be explained in detail in chapter three. Thus, wind 

energy prediction is not a simple task and still produces relatively inaccurate predictions 

when predictions are made for more than several hours ahead.  

Wind speed predictions for more than several days ahead are performed by numerical 

weather prediction (NWP) models. These are developed by meteorologists and generate 

predictions in low resolutions for large areas. Predictions for up to two days-ahead are 

commonly governed by physical, statistical or combinations of these two methods. Physical 

methods utilize the predictions of NWP models as inputs and consider the physical local 

wind conditions of smaller areas to enhance predictions. For short term predictions (hours to 
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one day-ahead), statistical models are more suitable. In particular, time series models have 

been developed to improve predictions (El-Fouly, El-Saadany and Salama 2008; Sánchez 

2006; Torres, et al. 2005). 

The short term prediction of wind speed for power generation purposes is being improved 

over time. Yet, according to a recent study absolute mean error in the case of day-ahead 

prediction is still 25%-30% of actual output. An hour-ahead prediction of a single site 

incorporates an approximately 10%-15% absolute mean error (Smith 2008). 

When forecasting aggregate wind power in a region, prediction errors are reduced because of 

aggregation of forecast errors. Smith (2008) reports that the day-ahead forecasting errors in a 

region are 15%-18% and the hour figures fall to 6%-11%. Forecasting aggregate wind power 

has to take into account the spatial correlation of wind speed in the region. If wind speed is 

strongly correlated over space, reductions in prediction errors would be limited compared to 

the case of weak correlation. Employing spatial statistics models, it was shown that the 

decrease in prediction error is related to the size of the geographical area considered rather 

than the number of wind farm sites in a region (Focken, et al. 2002; Holttinen 2005). Because 

spatial correlation limits the smoothing effects proposed by a large area, the reduction in the 

errors of aggregate prediction are not unbounded. 

Central wind forecasting systems have been developed and adopted on an ongoing basis in 

some regions. Some of these systems are still experimental or in a pilot stage while others are 
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already being practiced7. Besides offering the most accurate predictions to market 

participants, central systems support the competitiveness of electricity markets. The presence 

of central forecasting system in a market makes the frontier of wind power predictions 

common knowledge and promotes market coordination. 

In most deregulated electricity markets in the U.S. bidding wind power in the day-ahead 

markets is allowed. But in practice, wind power producers usually do not participate in this 

market. Instead, their energy is taken into the system and transmitted whenever it is 

available. Since the marginal cost of wind power generation is zero, it is most efficient to 

utilize all applicable wind energy before dispatching other generators. Introducing wind 

power to the system only in real-time minimizes the short term reserve requirements for wind 

power integration. By doing that, power systems operators avoid the errors involved in 

forecasting wind power for more than an hour-ahead. Then, wind power producers are 

compensated at the equilibrium price determined by conventional supply units and demand 

forces.  

Imprecise day-ahead forecasting of wind power and financial penalties levied on deviation 

from supply commitments discourage wind producers from participating as players in the 

day-ahead markets8. In cases in which the wind power producer is defined as a capacity 

resource in a region, he receives capacity market revenues but has an obligation to schedule 

its capacity value in the day-ahead market. 

                                                           

7 Some operating forecasting systems are in Alberta Electronic SO, California ISO and ERCOT. NY ISO uses 
persistence forecasting. 
8 In the U.S. energy imbalance charges may apply if energy deliveries differ by more than +/- 1.5% from their 
day-ahead schedule. 
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Previous work and the contribution of this study 

Price modeling has been studied extensively in the deregulated electricity markets era. 

Stochastic based approaches have generated models of high precision. Advanced models 

have been developed to reproduce successfully the unique dynamics of electricity prices. 

These models however are limited by their strong dependency on past observations. The 

stochastic approach is extremely sensitive to realizations of black-swan events9. Focusing 

only on price dynamics could have never predicted or explain the causes for an improbable 

event such as the electricity market crisis in California in 2000/2001.  

The ability of stochastic approaches to capture ex-post statistical properties depends heavily 

on the structure of industry, design and market operation from which price realizations are 

drawn. Significant developments or changes in electricity markets cannot be examined 

properly by stochastic models. In fact, the focus of my research question - the increasing 

penetration rate of a new intermittent energy resource – is a good illustration of such a 

dramatic change. 

The fundamental approach is the one that is suitable for our needs. The introduction of wind 

power not only affects the cost structure and aggregate power supply but also changes the 

financial risk involved in electricity market operations. For that reason, a model which 

emphasizes firm behavior needs to be developed. As more producers adopt the technology 

                                                           

9
 Nassim Nicholas Taleb, the author of the book The Black Swan: The Impact of the Highly Improbable (2007), 

summarizes a black-swan event as “First, it is an outlier, as it lies outside the realm of regular expectations, 
because nothing in the past can convincingly point to its possibility. Second, it carries an extreme impact. 
Third, in spite of its outlier status, human nature makes us concoct explanations for its occurrence after the 
fact, making it explainable and predictable.”, The NewYork Times, April 22, 2007.  
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(i.e. market penetration rate increases), the need for economic analysis to understand market 

dynamics is strengthened. However, our short review shows that models of electricity 

markets that are based on classic economic theory are very diverse in their behavioral 

assumptions, market structure and technical specificity of the power system.  

The current state of knowledge of the economic framework of electricity markets is 

insufficient for our purposes for several reasons. First, all studies regarding risk management 

reviewed here share the same simplifying assumption that electricity market participants are 

risk averse. This simplification of the role of risk is to say basically that firms dislike risk 

simply because they dislike variability in income. Objective functions with a risk aversion 

component collapse in most studies into a mean-variance formation (to favor higher return 

and lower variability). By making this assumption, researches presume that objective 

functions of electricity market participants should treat load prediction error in a symmetric 

manner. However, the financial and economic consequences of over-prediction and under-

prediction of load in the case of electricity trading are not symmetric. Thus the effect of risk 

in a market that faces a perfectly inelastic demand in real-time needs to be more carefully 

modeled.  

Electricity is a commodity that cannot be stored economically. For that reason holding a 

quantity that will not be consumed results in an immediate loss equal to the expenditure 

associated with the excess units bought in advance. In liberalized markets, this loss is not 

inevitable because excess volume may be resold at the day-ahead, spot markets or settled by 

a financial instrument. However, since load forecasts are published and known to all, it is not 
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uncommon that many LSEs within a region make the same error. For this reason, reselling 

electricity under these circumstances is not a desirable outcome for its holder.  

The under-purchase of electricity on the other hand exposes LSEs to spot market price 

volatility. The extreme volatility of wholesale electricity prices proved to be devastating for 

LSEs in extreme cases such as the California crisis mentioned above. Even if the probability 

of a catastrophe is low, its outcome can be very costly. In line with the above, we suggest an 

alternative approach for modeling firms’ objective functions in chapter two. Our approach let 

agents analyze the possible consequences of price volatility in the case of under or over-

purchase as opposed to taking risk as a loss factor per se. 

Secondly, most power generators are not able to supply electricity instantaneously. Due to 

ramp-up time the electricity supply curve is not stationary. In fact it corresponds to the 

generation capacity, which is applicable if needed, to supply electricity for a particular 

delivery period in the future. This is important for wind power integration because ramp-up 

time determines the feasibility and the cost of generating power in case of a sudden drop in 

wind power supply. 

Lastly, studies of wind power integration have concentrated mostly on the physical aspects of 

integration. While electricity demand provided the main uncertainty in electricity markets, 

the integration of wind power introduces uncertainty from the supply side. Electricity 

markets are usually organized as a two-settlement process with one market for short-term 

forward contracts (e.g. day-ahead or hour-ahead) and a spot market. At the time of trading 

forwards, firms have expectations about real-time load and price, which will be resolved at 

the spot market. Because wind power forecasting has particular statistical properties, 
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forecasting spot market outcome in a region with significant amounts of wind power capacity 

requires particular consideration. For this purpose one should model the statistics of regional 

wind power and the dynamics of wind power forecasting. In this study I develop a novel 

numerical methodology for simulating the probability distribution functions (pdf) of regional 

wind power and wind power forecasting associated with a prospective expansion of wind 

power capacity. Constructing these pdfs is essential for understanding the uncertainties and 

risk involved in wind-integrated electricity markets. 

Market uncertainties impact the decision making in deregulated electricity markets and 

thereby equilibrium quantities and prices. To my knowledge, no economic framework has yet 

been proposed to analyze the adjustments in the behavior of electricity market participants in 

response to the introduction of an intermittent energy resource. In this dissertation I introduce 

a theoretical framework and a numerical methodology that enable the analyses of electricity 

markets in general, and these which face a new economic environment created by an 

increasing share of wind energy. 

 

Organization of this dissertation 

The dissertation is organized as follows: Chapter 1 provided details about the research 

question, the fundamentals of deregulated electricity markets and a literature review. In 

chapter 2 a new theoretical framework for modeling the two-settlement process in electricity 

markets is introduced. Then, numerical experiments and sensitivity analyses demonstrate the 

qualities of the proposed model. Principles of wind power are explained in chapter 3. In this 

chapter we make use of wind speed data in Iowa to exemplify and study statistical and other 
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features of wind power generation. Chapter 4 provides an extension of the theoretical 

framework developed in chapter 2 to account for deregulated electricity markets with wind 

power. In doing so, we also expand the theoretical foundations to compare electricity market 

outcomes and welfare distributions with regard to the ownership of wind power capacity. A 

novel numerical methodology for the simulations of the conditional pdf of wind power is 

developed in Chapter 5. The goal in this chapter is to mimic the dynamics of information 

regarding the availability of future wind power at the time of trading short-term electricity 

forwards. In chapter 6 we couple the theoretical framework and the numerical methodology 

to generate predictions regarding the possible market outcomes implied by selected scenarios 

of wind power expansion. Chapter 7 concludes the findings of this study and makes some 

suggestions regarding future research. 
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Chapter 2: An electricity market model 

 

Characteristics of a desired model 

Studying our research question requires an economic-based modeling approach. The 

following are the qualities that such a model should demonstrate:  

• Capture the main economic drivers in electricity markets, including the evolution of 

load, characteristics of supply and risks associated with electricity market operation 

• Describe the behavior of market participants in a realistic manner 

• May be calibrated easily to fit the characteristics of load in different periods  

• Flexible to accommodate various scenarios of integrating wind power with no added 

complexity 

• Generate equilibrium measures of prices and quantities that follow statistical properties 

of real-world realizations 

To our knowledge such a model does not exist. 

 

A model developed for this work 

We propose an oligopolistic equilibrium model of a deregulated electricity market. The 

theoretical framework is developed to model the dynamics of electricity trading patterns 

toward a specific delivery period in the future. We adopt the current market design of a two-
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settlement process, where short-term electricity forwards are being traded and scheduled for 

delivery at the day-ahead market, and then power is balanced in the delivery period. 

Electricity is not storable thus the delivery period is also the period that power is generated, 

transmitted and consumed. For that reason, we denote the delivery period as real-time. The 

day-ahead market will be referred to as market for forward contracts. 

The model consists on an Independent System Operator (ISO), Load Service Entities (LSEs) 

and Independent Power Producers (IPPs). The ISO manages the power system and 

administrates wholesale electricity markets. In addition, the ISO makes predictions regarding 

electricity demand and available wind power (if applicable) at the beginning of the trading 

period. These predictions are accessible to all market participants. LSE firms are the natural 

buyers of power in the model. They are committed to deliver any realized load to their end-

users for a fixed short run retail price. Since LSEs face inelastic demand in real-time, they 

have an incentive to trade power via forward contracts and by that reduce their exposure to 

upward spikes in the spot price. IPP firms generate and supply power in real-time; they are 

strictly sellers in forwards markets but may buy back contracts in the event of excess supply 

in the spot market. IPPs have a time-sensitive convex cost function which characterizes the 

various types of power generators and a range of fuel inputs in use. The model is based on a 

double-sided auction where both LSEs and IPPs engage in a Cournot competition. We 

assume that all players have perfect information about the distribution of the spot price and 

do not impose any risk preferences on their behavior (i.e. risk neutrality). 
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The model does not attempt to examine electricity commodities other than spot power. The 

outcomes of wind power integration on subsequent markets (e.g. ancillary services, reserve 

capacity and others) may be added to the model in the future. 

 

Load forecasting 

Electricity demand varies by season, holiday, day of the week, hour of the day and other 

factors. Our model addresses one particular future delivery period at a time but may be 

parameterized easily to accommodate any load characteristics of any particular period. Since 

both load and wind speed data are usually reported on an hourly basis, we construct the 

model such that a period in the model corresponds to one hour. We focus on the statistics of 

the day-ahead forecasts for the rest of this study since this is the time that electricity forwards 

are being traded in nearly all deregulated electricity markets. Although not treated in this 

study, we provide in this section a more generalized framework to explain how to go about 

examining alternative timings for trading forwards. This may be useful for considerations of 

market design. 

First we construct a synthetic time series of loads, which will be used to simulate the short-

term evolution of electricity demand. Focusing on a specific period at a time, load is 

commonly considered to be normally distributed (Bessembinder and Lemmon 2002; Loutan 

and Hawkins 2007; Oum, Oren and Deng 2006). The dynamics of electricity demand may be 

fitted by several Gaussian time series models; we employ here a fairly simple model that 

accounts for the fundamental characteristics of load dynamics. 
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Let electricity demand at time � follow an exogenous stochastic process of gZ	�� type: 

 h� �  � ij'� � i '�� � k � il'��l (2.1) 

where  is the expected value of load when taking into consideration the characteristics of 

the period in question. The error terms follow the standard distribution  

 '� 8	0, �m)�~��n  . (2.2) 

Assume also that ij � 1 and the i� satisfy stationarity conditions.  

Knowing the distribution of load and prior realizations, one could infer easily the distribution 

of the prediction at each period according to how far apart that period is from real-time. That 

is, the distribution of the prediction of load in period 9, based on information at time � is 

given by  

 ho|Ω�~ 8e, eij) � i ) � k � il)f�m)f .r 9 L �8e � io'��o � k � il'��l , 	ij) � k � io� ) ��m)f .r 9 s � (2.3) 

where Ω� is the information observed up to time �. Notice that a prediction precision is non-

decreasing with the number of innovations 	�� and non-increasing with the prediction 

horizon 	9�. For example, a long horizon prediction has an expected value  and a variance 

that is composed from the number of innovations which have not occurred. Such a prediction 

would be vague compared to predictions of shorter horizons. The expected value of a one 

period ahead prediction is composed of innovations which are already known. The variance 

of this predictive is of size �m) only. 

This simple representation of load provides the short-term dynamics and the statistics of load 

prediction. The choice of a gZ	�� model is convenient for applications in numerical 
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simulations (illustrations are provided later in this chapter). For empirical purposes, load data 

in time series format conform better to a Zt	u� model (the lags of load are observed while 

the innovations of gZ process are not). Provided that standard assumptions are met, the 

lagged coefficients of load can be estimated and used for calibration in future work. 

 

Power generation 

Typically, an electric industry is characterized by various types of power generators and a 

range of fuel inputs. For example, nuclear and coal plants are large, are costly to build, and 

generate power at the lowest heat rate levels10. Smaller generators which run usually on 

natural gas and oil have lower fixed costs. They are characterized by higher marginal costs 

because they run at lower efficiency levels and utilize energy sources which are historically 

more costly than these used by larger plants. The portfolio of generators owned by an IPP 

firm may be ordered in terms of their marginal cost to obtain a cost curve, which is 

increasing and convex. Another fundamental feature of this curve is that it is non-stationary. 

It is time-sensitive since turning on generators is constrained by ramp-up time and the 

associated start up and shut down costs. Next, we give some more details about power 

generation technology to demonstrate the importance of this feature in electricity market 

modeling.  

Power plants are classified by their purpose to serve base, intermediate or peak load periods. 

This classification refers to the flexibility of a generator to adjust to sudden changes of load 

                                                           

10
 Heat rate is used to measure how efficiently a generator converts BTUs of heat to kWh of electricity. 
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and the associated tradeoffs in the efficiency of power production. Base load plants are in use 

continuously except for maintenance shut down periods. These large plants use mainly steam 

turbine technologies powered by coal or nuclear fission. Generators that serve base load 

require a long ramp-up time and may need many hours or days before they can provide a 

stable flow of electricity and achieve their full efficiency potential. Thus they are seldom 

responsive to errors of load predictions. Peak load plants are the most flexible generator units 

because they are the least costly to turn on. In general, smaller units have a shorter ramp-up 

time and higher marginal cost. Gas turbines are regularly used to adjust for periods of peak 

load fluctuations. Their response time is normally between one and four hours according to 

size and type. For periods of intermediate load, combined cycle gas turbine (CCGT) plants 

are usually turned on. A CCGT technology combines steam turbine with a gas turbine to 

enhance the efficiency of power generation. Using a heat recovery steam generator, the waste 

heat from gas combustion is utilized in a steam cycle. While gas turbines efficiency level is 

in the range of 10% to 30%, a modern CCGT unit may reach efficiency level of about 60%. 

However, since their ramp-up time is longer, CCGT units are typically used during periods of 

intermediate load. To generate power immediately, internal combustion engines may be used. 

These are small generators which usually produce electricity from oil almost instantaneously. 

Since they generate power in very low efficiency levels, they are used mainly for peak load 

periods and for ancillary power. 

In line with the above, we consider a time-sensitive supply curve. The curve accounts only 

for the generation capacity which if needed, is applicable to supply power in a particular 

delivery period in the future. The set of applicable generators characterizes the IPP’s supply 
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curve at each period prior to real-time. Clearly, this cost formation has some significant 

financial applications. For example, if producers turn on some of their generators just if they 

are able to sell their output in advance (e.g. forward contracts) power would be less costly to 

generate because the capacity which has relatively longer ramp-up time is characterized by 

lower heat rate. More specifically, the day-ahead supply curve (corresponding to a day-ahead 

forward market) includes more generators that are able to respond to changes in load at lower 

cost than the applicable generators in real-time. Therefore load prediction error a day before 

the delivery period has different financial consequences than the same error made just a few 

hours before the delivery. 

We assume that IPPs have an identical set of generating technologies and that capacity of 

peaking power plants is large enough to accommodate any possible load realization. 

Essentially, this is equivalent to the supposition that the system operator manages capacity 

and ancillary services adequately. 

Start by denoting �c as the amount of electricity that is pre-scheduled by a particular IPP for 

delivery in real-time. Then, the costs of power generation are governed by two possible states 

of the world. If production (denoted by �) is lower than �c then there is no need to turn on 

additional generators in real-time. In this event power is being generated efficiently and at a 

relatively low cost. In contrast, if realized production is higher than �c, generators have to be 

turned on. In this state of the world, costs of generating power are higher for two main 

reasons. First, most idle generators cannot produce power instantly. Those that can are 

characterized by very high operating heat rate. Second, startup costs during ramp-up time 
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drive marginal costs up. Those startup costs account for the time which generators are turned 

on but their output level is still low. 

We assume the following function to model IPP’s marginal cost of power production11  

:′	�, �c� � v ��� .r �c w � L 0��� � �x	� � �c� .r �y L � w �c z (2.4) 

where ��, �x w 0 are parameters and �y is the upper bound for the output of generation 

capacity owned by each IPP firm. 

The parameter �� characterizes the marginal cost of generating power, which is related only 

to the quantity produced. In the state of the world where the marginal unit is produced by a 

generator which was scheduled to deliver power in advance, that is the overall marginal cost. 

If IPP’s production level happens to be higher than the prescheduled capacity, an incremental 

cost �x is involved in turning on additional generators toward the delivery period. In this 

event the marginal cost is higher and thus constructs a spot power supply curve which is 

steeper. The � subscript is used to differentiate between the time of pre-scheduling power and 

the delivery period (spot), denoted by subscript �. 

The assumed linear marginal costs are a direct derivative of quadratic cost function. The total 

variable costs of power production are expressed as 

:	�, �c� � v 0.5���) .r �c w � L 0     0.5���) � 0.5�x	� � �c�) .r �y L � w �c    .z  (2.5)  

                                                           

11 Linear marginal cost functions are being used commonly for modeling the costs of generating power. For 
example, the supply function equilibrium model (SFE) introduced by Klemperer and Meyer (1989) has been 
applied in numerous studies of electricity markets. Other examples can be found in Bjorgan, Liu and Lawarree 
(1999), Sun and Tesfatsion (2007) and Tseng and Barz (2002). 
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Incorporating a two-state of the world cost function has a significant advantage because it 

allows for the modeling of spikes in production costs which are not entirely explained by 

high realizations of load. Sudden increase in generation costs can also be caused by 

scheduling insufficient generating capacity in advance. This may be the outcome of profit-

maximizing behavior or errors in load predictions. In both cases, in real-time the economy 

cannot avoid startup costs which may drive marginal generating cost up rapidly. 

 

Spot power and firm entry 

Markets for spot power (day-ahead, real time and others) are generally administrated by 

uniform price auctions. IPP and LSE firms submit their bids to the market administrator  

(usually the ISO itself) and generators are dispatched by their lowest bids until system 

demand is met. The bid of the marginal unit clears the market and determines the market 

price. This method is commonly adopted on the ground of the efficiencies associated with the 

competitive behavior of market participants. If sellers and buyers bid their marginal costs and 

maximum willingness to pay respectively, economic theory tells us that the allocation of 

resources will be efficient. In electricity markets however, empirical evidence (see chapter 1) 

suggest that the assumption of competitive behavior is not always suitable since each LSE 

firm represents large numbers of consumers and the number of IPP firms in a region is small. 

If IPPs exercise market power, the degree to which they are able to manipulate market prices 

depends on the timing of market operation. Although the same homogeneous commodity is 

traded in both forwards and spot markets, the cost structure is very different. Due to ramp-up 

time and fuel costs, peaking plants are turned on mainly for balancing power in real-time, 
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where base and intermediate load plants are the core supply of power in forward contracting. 

Moreover, peaking plants are relatively small and do not require high construction costs. 

Hence supernormal profits in spot market may encourage the entry of new peaking 

generators (e.g. Newbery 1998). Base and intermediate load plants on the other hand are 

more expensive and require more time to build. Therefore construction of these plants may 

be considered only in the long run. Consequently, unlike peaking plants, the strategy for 

trading the energy output of these plants is less threatened by entry. This environment gives 

rise to the claim that the degree of competitiveness of electricity markets governed by 

uniform auctions is negatively linked to the time of trade. In other words, markets which 

trade power closer to the time of delivery are expected to be more competitive and cannot 

sustain high mark-ups. Based on the motivation of preventing entry, IPPs behavior in spot 

and forwards market may diverge greatly. First, we will focus on the spot market; assuming 

zero construction costs of peaking plants motivates perfect competition behavior in real 

time12. On the other hand, market power may be exercised in markets for forward contracts. 

We will present a static model of oligopoly and analyze separately LSEs’ and IPPs’ forwards 

positions to characterize a symmetric Cournot-Nash equilibrium. 

 

Spot market 

If the threat of entry motivates IPPs’ to bid competitively in the spot market then we know 

that the realized spot price reflects true marginal costs. That is 

                                                           

12 The zero construction cost assumption is made for convenient presentation of the concept. In the case of 
positive construction costs of small generators, IPPs may price their output up to their average costs to prevent 
entry. 
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x � :′	� , �c � � k � :′	�|, �c|� (2.6) 

where 
x is the spot price and g is the number of IPPs in the electric industry. 

Given the number of forward contracts offered by each firm and the fact that power must be 

balanced in all times (i.e. ∑ �4| � h) one can solve for the spot market outcome. For 

example, for g � 2 and assume without loss of generality that �c) L �c  the spot price is 


x	h, �c , �c)� �
}~�
~� J�) h .r 2�c w h w 0

�� 	J�IJ����J�l��)J�IJ� .r J�el��Il��fI)J�l��J�IJ� w h L 2�c 
J�) h � J�) 	h � �c � �c)� .r h L J�el��Il��fI)J�l��J�IJ�

z  (2.7) 

and firms’ production levels are 

a� , �)b �
}~�
~� ��) , �)� .r 2�c w h w 0

�J�l��IJ��)J�IJ� , 	J�IJ����J�l��)J�IJ� � .r J�el��Il��fI)J�l��J�IJ� w h L 2�c 
��) � J�el���l��f)	J�IJ�� , �) � J�el���l��f)	J�IJ�� � .r h L J�el��Il��fI)J�l��J�IJ�   .

z  (2.8) 

 

The first parts in (2.7) and (2.8) describe the case that capacity traded via forwards is 

sufficient to meet realized demand. The second is where only firm 1 adds capacity in real-

time and the third part is where both firms startup generators in real-time. 

Next, and for the rest of this study, we focus on the existence and the characteristics of a 

symmetric forward position case. That is the case of g identical IPP firms where the 

Cournot-Nash equilibrium is �c � k � �c|. Focusing on the symmetric case simplifies the 

analysis since we need to examine only two states of the world. One is where no generators 
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are being turned on in real-time and the other is where all firms turn on generators in real-

time. For these two states it can be verified that the spot price is 


x	h, ��c4� � � J�| h .r ∑ �c4| w h w 0J�| h � J�| 	h � ∑ �c4| � .r h L ∑ �c4| z  (2.9) 

where ��c4 � a�c , … , �c|b, and production level of firm . is 

��	h, ��c4� � � �| .r ∑ �c4| w h w 0�| � J�|	J�IJ�� �	g � 1��c� � ∑ �c4| ,4�� � .r h L ∑ �c4|       . z  (2.10) 

 

Assuming symmetric forward positions, we can examine the changes in production levels 

and price caused by deviation of one producer. In the event that power traded via forwards is 

larger than realized load, deviation in the forward position has no significance on the spot 

market. That is because no additional generators are needed in real-time. On the other hand, 

in the event that all firms generate additional power in real-time a deviation has an impact on 

generation cost and thereby market outcome. Suppose firm . chooses to deviate, the change 

in the level of output with respect to own forward position is13 

���	h, ��c4���c� � g � 1g � �x�� � �x (2.11) 

and with respect to �’s position it is 

                                                           

13 Employing a Cournot approach implies that 
�l��	·��l�� � 0 , � � 1, … , g, � � .. 
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���	h, ��c4���c4 � � 1g � �x�� � �x , � � 1, … , g, � � .. (2.12) 

Notice that since demand must be met at all times we get ∑ nl�e�,l����fnl��|4�  � 0 .  

Finally, a Cournot firm that chooses to deviate from the symmetric position expects (in the 

case of turning on generators in real-time) a spot price change of 

�
x	h, ��c4���c� � � �xg  . (2.13) 

These derivatives become useful when we analyze the IPPs maximization problem. 

The Cournot players (both IPPs and LSEs) observe both load predictions and forwards offers 

made by other firms14. Therefore we may treat the distribution of load and thereby the 

conditional distribution of spot price and expected production levels as common knowledge 

in our model.  

 

Load Serving Entities and electricity demand 

The objective of this section is to construct the aggregate demand curve for electricity 

forwards. Assume 8 identical LSE Cournot firms where each is committed to deliver 1/8 

                                                           

14 Conceivably, participating and observing the outcome of 24 day-ahead and 24 real-time electricity markets 
being cleared on a daily basis may be considered as having complete information about the distribution of spot 
price. In addition, electricity markets, unlike any other commodity markets, are unique due to the presence of an 
ISO. As system operator and in most times the market administer, the ISO reports the conditions of the power 
system continuously and make predictions accessible to all. The ISOs’ reports also include supply and demand 
bids; volume of forwards traded and market prices. Doing so, the ISOs act as coordinators and diminish the 
value of private information. In addition to these transparencies, electric industries are typically more 
concentrated than other industries thereby making strategic modeling approach most relevant. 
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portion of the realized amount of electricity demand. In the short run (a year or more in the 

context of building a new large generator) LSEs are compensated by a fixed electricity retail 

price 
̀ . In every period the ISO announces a load prediction which is superior to any 

private forecast. Since this forecast is adopted by all market participants, information about 

prediction is symmetric. When overall load prediction is h�, each LSE’s expected demand 

is h� 8⁄ . Armed with this information and taking its rivals’ bids as given, LSE Q maximizes 

profits by choosing a forward position �c" . That is 

� � max�� 
U ¡V]^_" ¢h�, � �£c6¤

6� ,6�" ¥ 

� T
̀ � 
cY�c" � 

¦ §
̀ � 
x ¡h, � �£c6 �¤
6� ,6�" �c" ¥¨ � ©h8 � �c" ª«

j
r�eh¬h�f�h 

(2.14)  

where �£c6  is the quantity bid of player �, 
c is the market price of a forward contract and  

r�eh¬h�f is the conditional probability distribution function of load at the time of trading 

forwards. 

LSE’s expected profit has two payoff components; the first component in equation (2.14) 

stands for the payoff in trading forward contracts while the second component is the expected 

payoff associated with balancing power in the spot market. Substitute for the expected spot 

price in the symmetric case (2.9), the profits may be written as  
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� � T
̀ � 
cY�c"  

� ¦ 
̀ � ��g h® � ©h8 � �c" ª
∑ �£�̄I°�,¯±  �� 

j
r�eh¬h�f�h 

� ¦ §
̀ � ��g h � �xg ¡h � � �£c6 �¤
6� ,6�" �c" ¥¨∞

∑ �£�̄I°�,¯±  �� 

� ©h8 � �c" ª r�eh¬h�f�h . 

(2.15)  

The two integrals in equation (2.15) account for the two cases of need to balance power in 

real-time. The first integral is the expected spot payoff when the LSE has over-purchased 

power via forward contracts while the second stands for under-purchase of power. In the 

former, Contract for Differences (CFD) is put into effect. A typical CFD states that any 

deviation between forward power and spot power may be traded for the realized spot price. 

Essentially, CFD is a financial settlement that helps LSEs to hedge against volumetric risk on 

one hand and on the other helps IPPs avoid the cost and transmission problems associated 

with spot power surplus. The importance of a CFD settlement is discussed in detail in 

appendix 1. 

Taking the derivative of � with respect to the decision variable and employing the Leibniz 

integral rule, we get 
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� ���c" � T
̀ � 
cY � ¦ 
̀ � ��g h®
∑ �£�̄I°�,¯±  �� 

j
r�eh¬h�f�h

� ¦ §
̀ � ��g h � �xg ¡h � � �£c6 �¤
6� ,6�" �c" ¥∞

∑ �£�̄I°�,¯±  �� 

� �xg ©h8 � �c" ª¨ r�eh¬h�f�h  . 

(2.16)  

The first order condition (FOC) for interior profit maximization is 


c � ¦ ��g h
∑ �£�̄I°�,¯±  �� 

j
r�eh¬h�f�h � 

¦ §��g h � �xg ¡h � � �£c6 �¤
6� ,6�" �c" ¥∞

∑ �£�̄I°�,¯±  �� 

� �xg ©h8 � �c" ª¨ r�eh¬h�f�h 

(2.17)  

or 


c � UT
̂ 	·�Y � �xg ¦ ©h8 � �c" ª∞

∑ �£�̄ I°�,¯±  �� 
r�eh¬h�f�h . (2.18)  

Notice that the second order condition (SOC) is clearly satisfied here as 

�) ���c" ) � � 2�xg ¦ r�eh¬h�f∞

∑ �£�̄I°�,¯±  �� 
�h M 0 . (2.19)  
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Condition (2.18) describes the firm’s inverse demand function for forward contracts. It is 

interesting to see that an LSE’s willingness to pay for a forward contract exceeds the 

expected spot power price. Assuming risk neutrality generally drives the price of forward 

contracts to the commodity’s expected spot price (storage is irreverent for electricity). 

However, this result need not hold for the case of electricity. Since electricity has to be 

consumed at the time of production there is an economic value for pre-scheduling power for 

production (e.g. forward contracting). While for most commodities the time of production 

does not impact production cost, it does affect electricity generation cost. For that reason, 

according to condition (2.18) the LSE maximizes profits by choosing a forward position such 

that the marginal contract bought for price 
c is higher than the expected spot price. The 

wedge can be explained simply by the financial consequences of not contracting the marginal 

unit. In this case the marginal unit is not scheduled in advance, therefore it’s price also 

includes the expected cost of starting up additional generators. The expected additional cost 

of not scheduling the marginal unit is expressed by the RHS term in equation (2.18). 

Since LSEs are identical all arrive to the same FOC. Considering the symmetric Cournot-

Nash equilibrium where �c � �c) � k � �c¤ � �c, the aggregate demand is 


c � UT
̂ 	·�Y � �xg8 ¦ 	h � hc�∞

�� r�eh¬h�f�h (2.20)  

where hc � 8�c. 

Corner solutions may arise where at optimum (1) �c � 0; the price of a forward contract is 

too high to enhance LSE’s expected profits or (2) �c ² ∞; which is the case of a fully 
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hedged position. i.e. the forward price is lower than the expected spot price for any amount 

of forward bought. 

 

Independent Power Producers and electricity supply 

We start analyzing IPPs’ behavior in a fully deregulated wholesale electricity market. That is 

to assume that IPPs’ actions are not constrained by the ISO and therefore are motivated 

solely by profit maximization. Next, acknowledging IPPs’ potential market power we will 

incorporate a lower bound on IPPs’ output. This will be a more realistic examination since in 

principle IPPs can withhold a significant amount of capacity to raise prices and profits. 

The optimization problem of each IPP is similar to that of a monopoly which faces an inverse 

demand function (equation 2.20) and takes its rivals output as given. Formally, IPP . chooses 

forward position �c�  to maximize its expected profits 

´ � maxl�� U µV\??� ¶h�, � �·c4
|

4� ,4�� ¸ 

� 
c µh�, �c� � � �·c4
|

4� ,4�� ¸ � �c�  

� ¦ ¹
x µh, �c� � � �·c4
|

4� ,4�� ¸ � e�� � �c� f � :e��, �c� fº∞

j
r�eh¬h�f�h . 

(2.21) 

where �·c4 is the quantity offered by rival � taken by . as given. 

Express ́  with respect to the two states of the world 
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´ � 
c µh�, �c� � � �·c4
|

4� ,4�� ¸ �c�  

� ¦ »
x	h� � :e��f¼∑ l·��½�¾�,�±� Il��

j
r�eh¬h�f�h 

� ¦ ¹
x µh, �c� � � �·c4
|

4� ,4�� ¸ � e�� � �c� f∞

∑ l·��½�¾�,�±� Il��

� :e�� , �c� fº r�eh¬h�f�h . 

(2.22)  

Taking the first derivative 

� ´��c� � �
c	·���c� �c� � 
c	·� � ¦ 
x	·�∑ l·��½�¾�,�±� Il��

j
r�eh¬h�f�h 

� ¦ ¿�
x	·���c� � e�� � �c� f � 
x	·� � À�����c� � 1Á∞

∑ l·��½�¾�,�±� Il��

� :′e��, �c� fÂ r�eh¬h�f�h . 

(2.23)  

Writing explicitly the derivatives of the spot price and the cost function 
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� ´��c� � �
c	·���c� �c� � 
c	·� � ¦ 
x	·�∑ l·��½�¾�,�±� Il��

j
r�eh¬h�f�h 

� ¦ ¿� �xg � e�� � �c� f � 
x	·� � À�����c� � 1Á∞

∑ l·��½�¾�,�±� Il��

� ���� �����c� � �xe�� � �c� f À�����c� � 1ÁÂ r�eh¬h�f�h . 

(2.24)  

Employing symmetry and collecting terms  

� ´��c� � �
c	·���c� �c� � 
c	·� � UT
x	·�Y
� �x ©1 � 1gª ¦ e�� � �c� f∞

∑ l·��½�¾�,�±� Il��
r�eh¬h�f�h . (2.25)  

The FOC is 


c	·� � UT
x	·�Y � �
c	·���c� �c�  

��x ©1 � 1gª ¦ e�� � �c� f∞

∑ l·��½�¾�,�±� Il��
r�eh¬h�f�h . (2.26)  

The first derivative of the forward price with respect to quantity is  

�
c	·���c� � � �xg ©1 � 18ª ¦ r�eh¬h�f�h∞

∑ l·��½�¾�,�±� Il��
 . (2.27)  

Solving for the symmetric Cournot-Nash equilibrium where �c � �c) � k � �c| � �c gives 

the following optimality condition 
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ceh�, g�cf � UT
x	·�Y � �xg ©1 � 18ª �c ¦ r�eh¬h�f�h∞

|l�  

��x ©1 � 1gª ¦ 	� � �c�∞

|l�
r�eh¬h�f�h . (2.28)  

The willingness to sell forward contracts may be higher or lower than the expected spot 

price. Withholding capacity has two effects. On the one hand it maintains high prices in both 

spot and forwards markets. On the other hand, an IPP firm that chooses to offer more forward 

contracts sells more power in the spot market as well. 

We show in appendix 2 that the IPP’s profit function is strictly concave in �c� . This confirms 

that if a symmetric Cournot-Nash equilibrium exists it is a unique symmetric solution for the 

IPP’s problem. 

 

Solving the model 

If there is a forward price 
cÃ at which the market clearing condition �cÃ g � hcÃ holds, then 

we say that the market for forward contracts has an interior symmetric solution. Equating 

aggregate demand with aggregate supply (equations 2.20 and 2.28) the following must hold 
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cÃ	hcÃ� � UT
̂ 	·�Y � �xg8 ¦ 	h � hcÃ�∞

��Ã
r�eh¬h�f�h 

� UT
x	·�Y � �xg ©1 � 18ª �cÃ ¦ r�eh¬h�f�h∞

��Ã

� �x ©1 � 1gª ¦	� � �cÃ �∞

��Ã
r�eh¬h�f�h 

(2.29)  

which solves for the equilibrium quantity of aggregate forward contracts  

hcÃ � ©g8 � g � 8g8 � g � 1ª � Ä h∞��Ã r�eh¬h�f�hÄ r�eh¬h�f�h∞��Ã
  . (2.30)  

Substituting this result back into (2.20) the equilibrium forward price is 


c	hcÃ� � UT
̂ 	·�Y � ©1 � g8 � g � 8g8 � g � 1ª � �xg8 ¦ h∞��Ã
r�eh¬h�f�h 

Å 
c	hcÃ� � UT
̂ 	·�Y � J�	¤I �|¤	|¤I|I � Ä h∞��Ã r�eh¬h�f�h  .  
(2.31)  

Then, the forward price can be expressed by summing the expected spot price and the 

forward premium 


c � UT
̂ 	·�Y � tc (2.32)  

where 

tc � �x	8 � 1�g8	g8 � g � 1� ¦ h∞
��Ã

r�eh¬h�f�h . 
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Preliminary results and discussion 

At this point we can make some statements about the equilibrium volume and price of 

forward contracts. The equilibrium volume of forwards depends on the number of IPPs and 

LSEs in the market and the stochastic nature and precision of load forecasting. It is easy to 

see that the equilibrium volume of forward contracts increases in the number of power 

producers. As the number of IPPs increases, it is less effective for these firms to maximize 

profits by withholding production. It is not a surprising result seeing that power producers 

engage in an oligopoly game and the demand side in the model is completely inelastic in 

real-time. Furthermore, expression (2.30) shows that the equilibrium number of forwards 

increases in g at a decreasing rate. This reflects the rate at which market power diminishes in 

the number of producers. 

In the contrast, the equilibrium number of forwards decreases in the number of LSE firms. 

The explanation for this result is quite intuitive and related to the public good aspect of 

electricity forwards. LSEs share the responsibility to deliver any realized amount of load in 

real-time. Similar to the familiar free-rider problem each LSE firm would prefer that other 

firms  purchase forward contracts which would then lower the expected spot price for all 

buyers. But with a relatively large number of firms, the ability of each firm to manipulate the 

spot price is relatively small. Accordingly, the aggregate willingness to purchase forward 

contracts decreases in the number of LSEs (illustrated and further discussed in the next 

section). 

The absence of the cost parameters ��  and �x from the expression describing the equilibrium 

amount of forwards is a noteworthy result. It means that the level of forwards in equilibrium 
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is fixed over the range of positive cost parameters. Since LSEs demand in spot market is 

inelastic, IPPs decision on the amount of forwards is contingent on the distribution of load 

only. Accordingly, the impact of the cost parameters on welfare distribution in equilibrium is 

captured only by the forward price. 

The wedge between the price of forwards and the spot price is rooted in the dynamic nature 

of the supply curve. Since the cost of generating power is increasing in the time of trade (due 

to ramp-up time), the link between expected spot price and the forward price is not one to 

one. In particular, the forward premium is proportional to the incremental startup cost of 

generation units (�x). This result expresses our assertion that the premium is driven by the 

dynamic nature of production cost. LSEs desire to avoid this cost in the spot market and the 

ability of producers to exercise market power in the forward market determines the size of 

the forward premium. Notice that the premium tc is positive in expectations and decreases 

in both the number of IPP and LSE firms. 

Still, there are two cases where the spot and forward prices may coincide and reproduce the 

familiar competitive solution under risk neutrality assumption. First, consider the case of 

omitting ramping costs from the analysis. This can be expressed by imposing �x � 0; zero 

incremental cost between the two periods of trade � and �. Then, aggregate demand for 

forward contracts would be characterized by15  

hcÃ � � 0 .r 
c L UT
̂ Y   T0,∞� .r 
c � UT
̂ Y   
∞ .r 
c M UT
̂ Y  .z (2.33)  

                                                           

15 To arrive to this result simply maximize equation (2.15) and impose �x � 0.  
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In this case the Nash equilibrium is characterized by any non-negative amount of forward 

contracts as IPPs cannot enhance their expected profits by withholding capacity. 

Secondly, there would be no wedge in expectations if the number of IPP or LSE firms is 

sufficiently large. In particular, the forward price converges to the competitive price in the 

limit as g ² ∞ or 8 ² ∞. In any of these cases the forwards premium goes to zero and the 

forward equilibrium price would reflect the expected spot price.  

To conclude this part, the model is able to explain the positive forwards premiums reported 

by many empirical studies (e.g. Benth, Cartea and Kiesel 2008, Bessembinder and Lemmon 

2002, Cartea and Villaplana 2008, Douglas and Popova 2008, and Longstaff and Wang 

2004). Yet, it is important to perceive a fundamental difference between our work and the 

related body of literature in this area. The results presented by this model are not driven by a 

risk preferences assumption but by the basic properties of power generation cost structure, 

the number of sellers, buyers, and the commonly adopted design of deregulated electricity 

markets. 

 

Capacity withholding constraint 

The equilibrium volume and price of forward contracts developed in previous sections 

characterize the solution in a fully deregulated electricity market. Our results make it clear 

that IPPs have an incentive to manipulate market prices by withholding generation capacity 

in the forward market to maximize the joint profits from the spot and forward markets. While 

welfare loss is typically expected in a Cournot competition, the loss in electricity markets is 
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more severe than in other markets in which market power is present. That is because spot 

power demand is inelastic; the power is being generated eventually in spite of any capacity 

withholding behavior. Consequently, the production of power in real-time may be inefficient 

and cause misuse of energy resources.  Policy makers and administers of deregulated 

electricity markets are aware of this problem. Yet, in practice it is not an easy task to measure 

when market power is exercised. Overall operating costs and production constraints are not 

transparent. Operating costs includes the incremental cost involves in shifting to power plants 

of higher heat rates, start up and shut down costs and others16. Those as well as a physical 

withholding due to outages and periods of maintenance are essentially private information 

and therefore precise mark-ups are complicated to estimate.  

Although there is an ongoing debate about what is the effective way to measure and monitor 

the degree of competitiveness of wholesale electricity markets, some provisions are 

commonly implemented. For example, the Hirschmann-Herfindahl Index (HHI) is used as a 

first screening tool for market power by governmental agencies. Price caps are used 

frequently as an upper bound for spot price. The price cap is useful in stabilizing the 

volatility of spot markets and limiting LSEs’ exposure to spot prices. Finally, and maybe the 

most effective and frequently used tool to deal with uncompetitive behavior is to impose a 

must-offer provision. Doing so, ISOs limit the ability of large producers to exercise market 

power by forcing them to participate and offer their capacity in forward and spot markets. In 

addition, the ISOs examine regularly whether the prices offered by IPPs enable them to 

schedule considerable volume in advance, bilaterally and via forward markets. 

                                                           

16 Mansur (2008) shows that by ignoring production constraints such as ramping costs, several studies 
overestimated the exercise of market power in electricity markets. 
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In some markets the expected load is used to determine producers’ responsibilities for 

forward contracting. In the California ISO for example, if the amount of power cleared by the 

forward markets is insufficient, a secondary auction takes place. The Residual Unit 

Commitment (RUC) is an auction designed to force IPPs to supply the expected missing 

amount based on their incremental cost. In the case that IPPs are able to demonstrate market 

power while trading forwards, the RUC as a more regulated mechanism, is not a favorable 

alternative for them. 

Back to our model, a binding constraint on the offered capacity in forwards markets forces 

IPPs to move away from their optimal forwards positions. Since IPPs are identical it is 

reasonable to look at the case where the ISO imposes a symmetric constraint on the 

minimum amount of power that each IPP is held responsible to offer. In this case, IPPs do 

not have any incentive to offer more than their own constraint because that will increase their 

distance from the unconstrained (optimal) solution thus decreasing their profits further. 

Therefore, the aggregate volume of forwards imposed by the firm-level constraints can be 

mapped to a particular point on the demand curve.  

Frequently, ISOs sets a volumetric constraint which is a function of the moments of the 

forecasted load. A straightforward example is the one mentioned above, where IPPs are 

required to offer at least the expected load. In this case the forward price mapped from the 

demand curve is simply 


c � UT
̂ 	·�Y � �xg8 ¦ 	h � hc�«
�� r�eh¬h�f�h (2.34)  



www.manaraa.com

58 

 

 

 

which can be simplified further assuming a particular conditional probability distribution 

function. 

 

Computational experiments 

We conducted many simulations to evaluate the effectiveness of the model in capturing the 

economic determinants in electricity markets. We present and discuss in this section the 

model predictions and the sensitivity of the results to the parameters employed in the 

analysis. We consider the following figures for the base-case scenario in the numerical 

analysis. Assume that there are 5 IPP and 5 LSE firms, the cost parameters of generating 

power are �� � 1, �x � 2 and load is distributed normally and expected to be 100 at real-

time. Also, the standard deviation of load prediction is 5 (mean absolute error of 4% of the 

expected value) when forecasting demand at the day-ahead.17 All the numerical results 

consist of 5,000 draws. 

 

Spot price distribution 

The model focuses on one particular delivery period at a time. Since there is a great 

variability in the seasonal, diurnal, hourly and other temporal characteristic of electricity 

demand we start by evaluating the flexibility of the model to accommodate analyses of 

different delivery periods. 

                                                           

17 Various sources indicate a MAE of overall load prediction in the range of 3%-5%, depends on the season and 
the size of the region. 
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We consider periods that are characterized by expected loads in the range of 50 to 150. The 

variance is computed as

the expected load of the period in question.

Figure 2 displays the densities of spot market prices by expected electricity demand. 

particular, the middle density is the one 

are skewed as implied by the 

expected load the spot price density is shifted right and its variation is higher. In reality, even 

hourly prices in a single day are drawn from very different distributions. Demand (and 

thereby prices) at 2am would fit a density in the left sid

same day would be characterized by a density on the right side of the same figure as this is 

usually the peak load hour of the day.

Figure 2: Spot market price densities by expected 

 

0

0.1

0.2

0.3

0.4

0.5

0 4 8
1

2

1
6

2
0

2
4

2
8

F
re

q
u

e
n

cy

Spot Price

59 

are characterized by expected loads in the range of 50 to 150. The 

. Doing so, we normalize the variance with respect to 

the expected load of the period in question.   

displays the densities of spot market prices by expected electricity demand. 

particular, the middle density is the one that illustrates the base-case scenario. 

the two-state cost function. For periods of higher th

expected load the spot price density is shifted right and its variation is higher. In reality, even 

hourly prices in a single day are drawn from very different distributions. Demand (and 

thereby prices) at 2am would fit a density in the left side of figure 2. Spot price at 5pm of the 

same day would be characterized by a density on the right side of the same figure as this is 

usually the peak load hour of the day. 
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displays the densities of spot market prices by expected electricity demand. In 

case scenario. The densities 

of higher than average 

expected load the spot price density is shifted right and its variation is higher. In reality, even 

hourly prices in a single day are drawn from very different distributions. Demand (and 

. Spot price at 5pm of the 

same day would be characterized by a density on the right side of the same figure as this is 
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Load uncertainty  

We let standard deviation of load to vary between 5 and 35 to explore the impact of load 

uncertainty on market equilibrium. Given spot price expectations, the demand for electricity 

forwards is illustrated in figure 3. As we increase the uncertainty regarding real-time load, 

demand for forwards shifts upward and becomes smoother. This reflects the higher 

probability of making errors in load forecasting and therefore increases LSEs willingness to 

pay for forward contracts. 

 

 

Figure 3: Aggregate demand for electricity forwards as a function of standard deviation of load 

 

Given demand for forwards, each IPP chooses how much electricity to offer in forward 

markets which then determines the aggregate supply curve in the spot market. Equilibrium in 

the forwards market is described in figure 4 for various levels of standard deviation of load. 
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in figure 4 describe the equilibrium price and quantity of forward contracts in each. Once the 

forward market is cleared, production cost of any possible realization of load and thereby 

spot price is determined. The equilibrium is characterized by a capacity withholding as one 

would expect in an oligopoly modeling. The kink on the supply curve at the equilibrium 

quantity of forwards describes the shift into a less efficient power production scheme in the 

event that real-time load is higher than the prescheduled amount. Then, the equilibrium at the 

spot market may be depicted as the intersection of the illustrated supply curve and an 

inelastic demand curve created by any given realization of load.  
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4a. 

 

4b. 

  

4c. 4d. 

Figure 4: Equilibrium in the forwards market and the consequence real-time supply curve. Results by 
standard deviation of load of sizes 5, 15, 25 and 35 are depicted in figures 4a, 4b, 4c and 4d 
respectively 
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In the base-case scenario, the expected forward premium is about 5.6% and decreasing with 

load uncertainty. Similarly to real-world observations, the model generates higher (lower) 

premiums for peak (base) load periods. 

 

Figure 5: Forward premiums as a function of standard deviation of load 
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In figure 6 we examine the results for the simulations of the base-case scenario varying the 

number of power producers. As the number of IPPs increases, more electricity is settled via 

forward contracts. This is due to the decrease in IPPs ability to exercise market power by 

withholding capacity. For example, the particular parameters employed here shows that 

without any regulation a single IPP would offer less than 15% of the expected load for 

forward contracting. The amount increases at a decreasing rate; one half in a duopoly electric 

industry and so on.  

The equilibrium prices and profits generated by different numbers of producers are not 

comparable since the cost function of generating power is convex. Yet, we may evaluate the 

sensitivity of forward premiums to the number of IPPs. Similar to the equilibrium amount of 

forwards, the change in premiums also reflect the change in the ability to exercise market 

power (figure 6). Interestingly, the illustration shows that the model predicts positive 

premiums even when the amount of electricity traded via forwards exceed the predicted load.  

 

Figure 6: Equilibrium electricity forwards and premiums by number of IPPs in the market (base-case 
scenario assumptions) 
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Looking at the number of LSE firms reveals a very similar trend in the forward premiums. 

Except that the premium decreases here are not due to an increase in the number of forwards. 

LSEs’ incentive to purchase forward contracts is for the purpose of decreasing the expected 

spot price. Although the decision on the procurement of forwards is taken on the firm level, it 

has a public good aspect for all LSEs; a lower expected spot price.  

When the number of LSEs is relatively small, the quantity purchased by an individual firm 

has a greater impact on the spot price hence the willingness to pay is higher. As the number 

of LSEs increases, each firm’s ability to influence the spot price is smaller and that 

encourages a free-rider behavior. As a result, when we increase the number of LSEs the 

volume of trade is almost constant but the premium reflects the diminishing interest in 

hedging spot market risk by forward contracting (figure 7). 

 

Figure 7: Equilibrium electricity forwards and premium by number of LSEs in the market (base-case 
scenario assumptions) 
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Cost of generating power 

Our analytical results from previous sections show that the forward price depends linearly on 

the cost parameters �� and �x. This result holds whether the market is fully deregulated (eq. 

2.32) or whether capacity constraint is being imposed (eq. 2.34). When we look at the 

forward premium we see that the wedge between the spot price and the forwards price is 

fixed for any positive value of ��. The reason for that is the fact that �� is an essential cost 

which cannot be avoided in any state of the world. That is an expected result since the 

demand for hedging power is created by the fact that generating power by starting up 

generators is more costly. On the other hand, the forward premium divided by the expected 

spot price is increasing approximately linearly in �x (figure 8). 

 

Figure 8: Premiums as a function of real-time cost parameter and the number of IPPs 
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Capacity withholding constraint  

The base-case scenario provides solution for a fully deregulated electricity market for a given 

set of assumptions. Keeping the same set of assumptions we compare this unconstrained 

solution with particular levels of capacity constraints the ISO may impose on IPPs to offer in 

forward markets.  

The results are presented in figure 9. The model emphasizes the effectiveness of imposing a 

capacity constraint in electricity forwards markets. In this example the unconstrained 

aggregate amount offered by 5 power producers is 80.6, which is in the order of four standard 

deviations lower than the expected load. The illustration shows that the forward price and 

IPPs profits decrease in the magnitude of the must-offer constraint. Notice that the constraint 

is much more effective in the range which it is lower than the expected load. This is due to 

the asymmetric financial consequences that all market participants experience if realized load 

is lower or higher than expected. 
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Figure 9: Equilibrium forward price and IPPs expected profits by a capacity withholding constraint 
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Similar to real-world electricity markets, the distributions of the spot price at different 

delivery periods in the model diverge greatly. Also, the model generates a wedge between the 

forward price and the expected spot price. This result is in line with the extensive empirical 

evidence suggesting the existence of a forward premium. While the literature commonly 

refers to this wedge as a risk premium, the results presented by this model are not driven by a 

risk preferences assumption but by the electric industry structure, fundamental properties of 

electricity production and the design of deregulated electricity markets. 

Finally, we show that the deadweight welfare loss associated with a fully liberalized market 

could be substantial. Having various generation technologies, IPPs have an incentive to 

substitute away from the more efficient generating units for expensive spot power 

production. This in turn generates sizeable premiums for forward contracts and supernormal 

profits. When we add a capacity withholding constraint (also known as a must-offer 

provision), the welfare loss and premiums are reduced.  

In the rest of the study, the model developed here is extended to allow thorough examination 

of the possible paths and market outcomes for wind power integration. In particular, the 

required extension of the theoretical model is introduced in chapter 4, and the appropriate 

numerical methodology for simulating scenarios of wind power integration is developed in 

chapter 5.  
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Chapter 3: Wind power 

 

Introduction 

Our objective in this chapter is to discuss the technical, statistical and financial principles of 

wind power capacity. We start with a review of recent developments, current status and 

challenges of wind power expansion. Then, we make use of Iowa wind speed data to explain 

and illustrate the basics of wind speed statistics and the estimation of a local wind speed 

probability distribution density. Next, we give details about the relation among wind speed, 

wind power resources and usable wind power, by exemplifying the performance of a typical 

modern large wind turbine. In doing so, we explore spatial differences as well as month to 

month variability of harvesting wind power at selected sites in Iowa. In the following section, 

we outline some findings from the literature regarding wind spatial correlation. This is 

particularly relevant for this study since we are interested in modeling an intermittent 

regional wind power supply. Lastly, we discuss the implications of uncertain power supply 

with relation to electricity markets and our economic framework in particular. 

 

Overview 

Global installation of wind power capacity has been increasing rapidly during the last two 

decades. In particular, more than 30% of the world’s wind power capacity was added just in 

2008 (DOE 2009). The highest penetration rate is experienced by Denmark where wind 
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power accounts for 20% of overall electricity consumption. Next, Spain followed by 

Portugal, Ireland and Germany demonstrate penetration rates in the range of 7%-12%. In 

many other countries wind power capacity has increased recently as well, yet accounts for 

only up to 5% of overall capacity. When it comes to overall wind power capacity, the ranking 

is quite different. During 2008 the U.S. overtook Germany to take the lead in cumulative 

wind capacity with 25,369 MW vs. 23,933 MW in Germany. However, the percentage of 

wind power consumed in the U.S. accounts only for 2% of overall electricity consumption. 

Other countries with increasing wind capacity but still low penetration rates are India and 

China (about 3% and 1%, respectively). This trend suggests that there is room for large 

increases in wind capacity in many countries. 

Several linked forces may explain the growth in wind power capacity in recent years. First, 

advances in wind harvesting technologies have allowed larger turbines to be installed. The 

average wind turbine installed in the U.S. in 2008 was rated at 1.67 MW of capacity, which 

is 133% higher than average rated capacity of turbines in 1998-1999. Nowadays, engineers 

have completed the design and manufacturing of 3 MW turbines, which are the largest 

commercial turbines to come online. As we explain in the next section, economies of scale 

are important in wind power production. Therefore, the ability to transport, install and 

connect larger turbines to the grid at sites with appropriate wind speed conditions yields 

increasing returns. Scale effects, technological advances in turbine designs and better 

transmission lines have significantly lowered the cost of harvesting and delivering wind 

power over the years. 
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Government subsidies supporting renewable energy have also increased, reducing the private 

cost of wind projects further. The main justifications for these subsidies are energy 

independence and reductions in environmental externalities from the combustion of fossil 

fuels. Life cycle assessment studies show that the energy payback time of a wind turbine is 

less than six months over a 20 year life time (Martínez, et al. 2009; Schleisner 2000). 

Switching from conventional generators that run on coal and natural gas to wind turbines 

mitigates almost all greenhouse gasses emissions related to the production of electricity. 

Martínez et al. show that the cradle to grave environmental contamination of wind project 

may be recovered nearly 31 times during the life of a wind turbine.  

Concerns regarding dependency on fossil fuels brought forward the importance to diversify 

energy portfolios. Employing various renewable energy sources in a portfolio is a practical 

way to promote energy security. A renewable portfolio standard (RPS) is a state policy in the 

U.S. and in some other countries that support this goal. RPSs mandate the shares of 

electricity to be produced from wind, solar, hydro, biomass and other renewable energy 

sources.  

In addition, speculations about fuels reserves and their price behaviors encourage 

investments in wind power projects. The intrinsic variation of wind speed is uncorrelated 

with fuel markets. From a risk management point of view, this fact alone may enhance an 

energy portfolio in a firm level.    

Several factors need to be considered and resolved before the installation of significant new 

wind power capacity becomes feasible. The main challenge with large projects is updating 

transmission systems. Wind capacity that exceeds local electricity demand requires 
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additional costs associated with updating the grid and constructing adequate transmission 

lines. Even so, many wind farms are constructed in rural areas. That is because of two main 

advantages those areas have over urban areas: land availability for wind projects and the 

decrease of the potential problems associated with turbines’ sound due to relatively low 

population density. Since power systems in rural areas are not structured to handle electricity 

flows from large wind farms, integrating new wind capacity to the grid involves substantial 

planning and investments. The costs of updating transmission lines to deliver energy from 

distant areas to hubs of electricity are usually governed by the regional system operators.  

The physical aspect of setting up wind turbines is another limiting factor. Costs related to 

transportation and installation of large turbines increase exponentially with size. Therefore, 

the benefit from scaling up wind projects should be weighed against the cost of the extra 

logistics involved. For example, on shore turbines used to be generally larger than offshore 

ones due to ground transportation constraints. Also, the delivery (if applicable) and 

installation requirements become more complex when dealing with larger components. To be 

able to overcome the downside of shipping and handling turbine’s parts over long distances, 

factories manufacturing these parts may be constructed in mainland areas. For instance, Iowa 

and its surrounding states are in the process of creating a conglomeration of plants for 

turbines, blades and towers.18 For that reason, it is not surprising that Iowa is ranked second 

in the U.S. with current wind capacity of 3043.28 MW and first in wind power consumption 

                                                           

18 For example, during 2008 alone the following facilities came online: Clipper Windpower (Cedar Rapids), 
Acciona Energy North America (West Branch), Siemens Power Generation (Fort Madison) and TPI (Newton). 
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of 13.3%.19 Wind capacity expansion in that region in recent years is explained partly by the 

availability of locally manufactured parts. 

Finally, once adequate infrastructures are established and turbines had been constructed the 

transmission itself is not cost free. Long distance power transmissions and distributions incur 

line losses. The costs associated with these losses are particularly relevant for wind farms 

constructed in rural areas. 

 

Wind speed 

Wind is caused by differences in air pressure within the atmosphere. Air tends to flow from 

regions of high pressure to regions of low pressure. The difference in pressure is the outcome 

of uneven heating of the earth by solar radiation. Therefore, wind variation may be viewed 

based on annual, seasonal, diurnal, hourly and inter-hourly differences. These variations need 

to be acknowledged and evaluated properly for wind energy considerations. 

Numerous probability density functions (pdf) have been employed in applications of wind 

speed studies. Carta, Ramirez and Velazquez (2008) carry out a review based on more than 

two hundred studies describing wind speed frequency distributions. The most frequently 

employed is the two-parameter Weibull pdf which has been found to have a series of 

advantages. Among these are dependency on two parameters only, flexibility, simplicity and 

a good fit to measured data. The Weibull is generally an appropriate pdf choice for wind 

speed modeling with one exception. For regions that have frequent occurrences of no wind, 
                                                           

 18, 19, 21  American Wind Energy Association, http://www.awea.org/projects/projects.aspx?s=Iowa (accessed 
August 09). 
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other probability distributions may be more suited. The catalog presented by Carta, Ramirez 

and Velazquez (2008) review the appropriate pdfs in this circumstance as well. However, 

since the decision on location for wind farms is not random, sites with low wind speeds are 

unlikely choices for wind projects. Thus we focus on the Weibull pdf in this study. Next, we 

give some details how to go about employing the Weibull pdf to describe the statistics of 

wind speed. 

Let + (m/s) denote wind speed, B (m/s) and R the scale and the shape parameters of the 

Weibull pdf respectively, then the wind speed density function can be written as 

 r	+� � Æ= �Ç=�Æ� F�u È� �Ç=�ÆÉ   . (3.1) 

Some families of distributions are obtainable as special cases of the Weibull distribution. For 

example, for R=1 the Weibull distribution becomes an exponential distribution. In the case 

of R=2 the distribution is reduced to the Rayleigh distribution, which if applicable simplifies 

the analysis of wind speed considerably20. For the special case of R=3.6 the Weibull 

distribution is approximately normal (Dubey 1967). It was shown that a simple data 

transformation can make the relation between the Weibull and the Gaussian distributions 

very useful for studying wind speed (Torres, et al. 2005). The transformation is based on the 

fact that a Weibull distribution raised to the power of C is also a Weibull. Let C � R/3.6 and 

raise wind speed data to the power of C, then wind speed data may be analyzed with respect 

to the normal distribution. In figure 10 we describe the distributions for the case that wind 

                                                           

20 The knowledge of mean wind speed alone is sufficient to employ the Rayleigh distribution. Denote mean 

wind speed by �, the pdf can be described as r	+� � Ë) � Ç4�� F�u È� ËÌ � Ç4�)É. 
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speed has Weibull distribution with the parameters R=2.2 and B=3. It is shown that an 

approximation to the Weibull may be obtained by employing one of the other distributions 

discussed here. The decision on which distribution to apply and the consequent goodness of 

fit is determined by the particular shape parameter of the Weibull pdf in use.  
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Figure 10: Illustration of a Weibull pdf with relation to other distributions 
 

In the following, we utilize data from Iowa to investigate and exemplify the distributional 

patterns of wind speed. Long run averages of hourly wind speed data from numerous cities in 

Iowa are available from the Iowa Energy Center. The data we employ is reported in a 

frequency distribution format where the number of hours at each wind speed is recorded.  

Parameters can be estimated with methods of moments, maximum likelihood, or least 

squares. In this study we employ a method introduced by Seguro and Lambert (2000). This is 

a modified maximum likelihood method for analyzing data in a frequency format. Denote the 
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relative frequency of a particular wind speed +� by u	+�� where Σ�u	+�� � 1. The Weibull 

pdf parameters are estimated by the expressions 

 R � ¹∑ u	+��+�Æ��	+��6�� ∑ u	+��+�Æ6�� � � u	+����	+��6
�� º� 

 

(3.2) 

and 

 B � ¹� u	+��+�Æ
6

�� º /Æ  . (3.3) 

Equation (3.2) is solved by an iterative process first, and then equation (3.3) is solved 

directly. 

The relation among the Weibull parameters and the moments of the distribution are given by  

 � � BÎ	1 � 1 R⁄ � (3.4) 

and 

 + � B)TÎ	1 � 2 R⁄ � � Î)	1 � 1 R⁄ �Y � B)Î	1 � 2 R⁄ ���) (3.5) 

where � and + stand for the mean and the variance of wind speed, respectively and Î	·� is 

the gamma function.  

Wind speed is classified on a scale of 1 to 7 and is usually measured at 10 or 50 meters above 

ground (table 1). Iowa wind speed is ranked 10th in the U.S. for its wind energy potential.21 

The annual average wind speeds measured 50 meters above ground in Iowa are 5.5-6 m/s at 
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the northeastern parts of Iowa, and generally increase as one goes from the southeastern to 

the northwestern parts from 6 m/s to 8 m/s. We choose to examine counties in Iowa which 

already accommodate a large number of wind power plants (e.g. the northwestern counties) 

as well as others to demonstrate the distributional differences of wind resources over space. 

 

Table 1: Wind speed classification 

Wind 

power 

class

Resources 

potential

Wind speed 

at 10 m 

height  (m/s)

Wind power 

density at 10 m 

height (W/m²)

Wind speed 

at 50 m 

height  (m/s)

Wind power 

density at 50 m 

height (W/m²)

1 <4.4 0-100 <5.6 0-200

2 Marginal 4.4-5.1 100-150 5.6-6.4 200-300

3 Fair 5.1-5.6 150-200 6.4-7.0 300-400

4 Good 5.6-6.0 200-250 7.0-7.5 400-500

5 Excellent 6.0-6.4 250-300 7.5-8 500-600

6 Outstanding 6.4-7.0 300-400 8.0-8.8 600-800

7 Superb 7.0-9.4 400-1,000 8.8-11.9 800-2,000

Source: U.S. Department of Energy  

The demand for electricity is strongly related to temperature. Low temperatures increase 

electricity demand due to heating appliances while high temperatures increase demand 

because of the use of air conditioners. Since heating is fueled by many energy sources and 

cooling is almost exclusively by electricity, the highest demand typically occurs during the 

summer months. In figure 11 we exemplify the demand for electricity in April and July in 

two regions in the U.S. during 2007. In both regions demand is roughly 50 percent higher 

and much more volatile in July. Higher variability in electricity demand is associated with 

frequent peak load periods which are typically characterized by higher electricity prices. 

Therefore, one would expect that in these periods wind power will be in higher demand. For 

that reason, we focus on the distribution of a typical July to demonstrate the spatial Weibull 
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densities, means and standard deviations in Iowa (table 2). We employ wind speed data 

measured at 50 meters above ground.   

 

Figure 11: Hourly load in 2007 at the Electric Reliability Council of Texas (ERCOT) and the 
Southwest Power Pool (SPP) which includes the transmissions to Arkansas, Kansas, Louisiana, 
Missouri, New Mexico, Oklahoma and Texas. 
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Table 2: Estimated July wind speed parameters and moments at selected sites in Iowa, U.S. 

County City Location

Shape 

Paramater 

k

Scale 

parameter 

c (m/s)

Mean 

(m/s)

Std 

(m/s)

Sac Schalar NW 2.61 6.90 6.13 2.53

Pocahantas Palmer NW 2.62 7.16 6.36 2.61

Hancock Garner N Central 2.60 6.88 6.11 2.53

Carroll Arcadia Central W 2.63 7.09 6.30 2.57

Hamilton Blairsburg Central 2.64 7.08 6.29 2.57

Floyd Charles City NE 2.59 6.40 5.68 2.36

Lee Argyle SE 2.54 5.95 5.28 2.23

Osceola Harris NW 2.64 7.41 6.58 2.68

BuenaVista Storm lake NW 2.59 6.98 6.20 2.57

Worth Joice N Central 2.61 6.96 6.18 2.55

Dickinson Spirit Lake NW 2.63 7.09 6.30 2.57

Greene Jefferson Central 2.58 6.45 5.73 2.38

Allamakee ChurchtownNE 2.52 5.36 4.76 2.02  

The average wind speed is in the range of 4.76 to 6.58 (m/s), and standard deviation is 

between 2.02 and 2.68 (m/s). The variation of wind speed at different sites cannot be 

compared by the standard deviations since they are estimates of different Weibull 

distributions. Thus, for this purpose wind speed coefficient of variation (B+Ïx) should be 

computed. We use equations (3.4) and (3.5) to obtain  

 B+Ïx � √+ �⁄ � TΓ	1 � 2 R⁄ � � Γ)	1 � 1 R⁄ �Y )⁄ /TΓ)	1 � 1 R⁄ �Y . (3.6) 

It is clear from (3.6) that B+Ïx is a function of the shape parameter only. Also, it can be 

shown that B+Ïx is a decreasing function of R. This result is useful since comparing R of 

different Weibull distributions alone can provide a standardized index for the fluctuation of 

wind speed. For example, our results show that counties Hamilton and Osceola have the 

highest estimated shape parameters (depicted in column 4) therefore, they present the lowest 
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wind speed variations as well (B+Ïx~40.7%). Since our estimates suggest that Osceola 

County also has the highest mean, it is the most preferred site in terms of both average wind 

speed and coefficient of variation. We depict the fitted distribution of wind speed at 

Allamakee (B+Ïx~42.4%) and Osceola counties to demonstrate the differences in wind 

speed distribution over space (figure 12). These two are selected since they display the 

minimum and maximum values of both Weibull parameters in our sample respectively. The 

two fitted distributions are skewed as implied by the magnitude of the shape parameters. The 

distribution of the northwestern site has higher mean and fatter tails compared to the 

northeastern site. 

Note, however that wind speed distributions by themselves are not sufficient for evaluating 

returns to wind power projects. As we discuss later, the economic wind potential of a site is 

actually linked more to the usable power rather than its wind speed. In addition, economic 

evaluation of wind potential of a site should not be weighted uniformly over all periods. 

Wind power revenues are subject to the price of electricity at the time of delivery. On periods 

of higher electricity demand, prices tend to be higher as well. Therefore, higher wind speeds 

in certain periods are more valuable than in other periods. 
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Figure 12: Fitted Weibull pdfs for July wind speed distributions at 50m height for sites at Allamakee 
and Osceola counties, IA  
 

 Next, we examine the month to month variation of wind speed. We carry on with our 

example and focus on the wind variation at Osceola County (table 3). Our estimation shows 

that the winter months are windier, peaking in March while summer months are somewhat 

calmer. The windiest month has roughly 30% higher average wind speed than the lowest. 

July in particular has the second lowest monthly average wind speed, which stands in conflict 

with the elevated electricity demand at that time of the year. The coefficient of variation of 

each month shows non-monotonous trend, peaking in November with 46% and falls below 

40% for only a few months in a typical year. 
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Table 3: Estimated monthly wind speed parameters and moments at Osceola County, IA at 50m 

Shape 

parameter 

k

Scale 

parameter 

c  (m/s)

Mean 

(m/s)

Std 

(m/s)

January 2.73 9.07 8.07 3.19

February 2.61 9.17 8.15 3.36

March 2.76 9.35 8.32 3.26

April 2.50 9.37 8.31 3.55

May 2.50 8.69 7.71 3.30

June 2.48 8.33 7.39 3.18

July 2.64 7.41 6.58 2.68

August 2.70 7.28 6.47 2.59

September 2.61 8.08 7.17 2.96

October 2.67 8.85 7.87 3.18

November 2.32 8.98 7.96 3.65

December 2.50 9.08 8.06 3.45

Annual 2.44 8.68 7.69 3.36  

 

Wind power density 

The instantaneous input-output relation of wind speed and wind power potential (denoted by 


Ï� is characterized by the equation 

 
Ï	+� � 12 ÕZ+Ö (3.7) 

where Õ is air density (kg/m³) which depends on altitude and temperature, and + is the wind 

speed that goes through an area Z (m²). Notice that wind power is an increasing return to 

scale process of wind speed. Theoretically, if one chooses a twice windier site holding all 

other factors constant, the wind power potential will be eightfold higher.   
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Since the density function of wind speed cubed can be represented by a Weibull function as 

well, mean wind power density of an area of size Z can be expressed as (see for example, 

Jamil 1995): 

 U	
Ï� � ¦ 
Ï	+�r	+��+«
j

� Z2 ÕBÖΓ	1 � 3 R⁄ �  . (3.8) 

Frequently, wind power potential is expressed on a monthly or an annual basis. To arrive at 

an approximation of the wind power resources per �² over a timeframe of a month or a year 

one could simply multiply (3.8) by 730.48 and 8,765.81 respectively. 

The mean wind power density represents the potential of wind resource at a chosen site. 

Figure 13 portrays mean wind power density per unit square (i.e. Z � 1) in each month at 

Osceola County. The required air density data are obtainable from the Iowa Energy Center as 

well. The estimated figures show that small differences in wind speeds are translated into 

very large deviations in wind power. The month to month wind power potential varies 

greatly; from wind classification 2 (marginal) on summer months to classification 5 

(excellent) on winter months and early spring. 
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Figure 13: Month to month mean power density at 50m for Osceola County, IA 
 

Usable wind power  

When it comes to harvesting wind power, the actual energy that can be extracted by a wind 

turbine is limited. First, regardless of technology and turbine’s design the instantaneous 

power that can be extracted from wind is bounded. According to Betz Law (Betz 1926) there 

is an upper limit of 59% for power extraction from air flows22. Secondly, wind turbines 

impose mechanical limitations as well.  

                                                           

22 Wind turbines extract energy by capturing wind speed. This suggests that for a turbine to be able to gain 
100% efficiency, its rotor should be like a brick wall. But in this case it won’t spin at all and no kinetic energy 
would be converted. On the other hand, if there was no rotor at all the wind would have passed through with no 
impact. In both cases the efficiency of the turbine is 0%.  
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The capacity of a wind turbine (denoted by 
=) in a given wind speed may be described by 

the equation 

 
=	+� � Ø	+� Ã t
 (3.9) 

where t
 is the rated power of the turbine. It is generally the maximum power that a wind 

turbine can generate. Ø	+� is a non-linear function describing the turbine efficiency 

coefficient. The coefficient measures the rate at which the turbine extracts energy in different 

wind speeds relative to its rated power. The capacity of wind turbine is commonly 

characterized by a static power curve. To exemplify, we describe the operation of a typical 

modern turbine rated 1.5 MW. The minimum wind speed at which the turbine starts 

generating power at is called cut in point. For a 1.5 MW turbine, this point is usually in the 

range of 3.5-4.0 m/s. Once wind speed is higher than the cut in point, power is generated 

increasingly with wind speed. The rated speed is the speed at which the turbine is intended to 

achieve its rated power (i.e. t
). In our example, power of 1.5 MW is generated when wind 

speed is at about 12-14 m/s. At higher speeds, the turbine maintains its rated power or 

decreases its output gradually, depending on the turbine design and power control. When 

wind speed exceeds the turbine’s cut out point, the generator is shut down to avoid exposing 

the turbine to damage. Cut out point for the described turbine may be in the range of 20-25 

m/s.  

Estimation of power curves are performed based on field measurements. First, data 

measuring wind power output is plotted against wind speed. Then, an efficiency coefficient 

function Ø	+� Ù T0,1Y is fit to map wind speed into wind power. In doing so one needs to 

account for the two truncated ranges correspond to the cut in and cut out points. In these 
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ranges Ø � 0 is imposed since no power is generated. At the rated speed of the turbine, its 

capacity reaches the rated power thus Ø � 1. 

In figure 14 we depict a power curve of a typical 1.5MW modern turbine against the long 

averages wind speed distributions of April and July at Osceola county at height of 80m 

(which is the appropriate hub height of a typical 1.5 MW turbine). The depicted power curve 

was fitted by eye to the power curve of a particular commercial machine published by the 

manufacture (details are provided in appendix 3). The illustration magnifies the importance 

of fitting the right turbine to the wind conditions of the site in question. The monthly average 

wind speed in typical July and April is 7.05 and 8.95 respectively. Notice that in July, it is 

not very common for the turbine to run on its rated power. On April, the probability of that to 

happen is higher. The illustration shows that wind conditions in one month may be more 

suited than in other months for a turbine of this rate. 
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Figure 14: Illustration of July and April wind speed distributions at Osceola County, IA and a power 
curve of a typical modern 1.5 MW wind turbine 
 

A turbine capacity factor (:;) is the ratio between the average power generated over a 

period of time and the rated power of the turbine. More formally, it can be written as 

 :; � Ä 
=	+�«j r	+��+t
 � ¦ Ø	+�r	+��+«
j

  . (3.10) 

The computation of the capacity factor requires numerical integration techniques. Although 

the capacity factor is commonly used as an index to indicate the performance of a wind 

turbine, it should be regarded with caution. The fitted power curve is sensitive to the wind 

conditions at the specific site and measurement errors. Therefore, the computed capacity 

factor of a very same wind turbine may be quite different when the turbine is sited and its 

output is measured at different locations. The anticipated losses of a wind power plant are 

referred to as a loss factor, which accounts (but not limited) to downtime due to maintenance, 
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line losses, physical conditions and land use (building, trees, crops etc), and a projected 

decrease in the turbine’s efficiency over time23. 

A recent report by the U.S. Department of Energy (2009) indicates that the average U.S. 

industry capacity factor increased from 22% for projects installed prior 1998 to 35% for 

projects installed in 2007. Moreover, in the best wind resources areas, wind plants commonly 

exceed a 40% capacity factor and in some cases the capacity factor is even greater than 50%. 

The month to month variation of the computed capacity factor of our 1.5MW turbine at 

Osceola County is large (figure 15). For instance, the capacity factor attains 40% in a typical 

July month and 58% in a typical April month. These estimates ought to be adjusted down by 

the anticipated loss factor. 

The capacity factor is considered to be a good measure for the productivity of a wind turbine. 

However, its variability over time and space and the fact that the hourly price of electricity 

fluctuates as well, suggest that more inputs are required in order to assess the economic value 

of a wind turbine. 

                                                           

23
 Iowa Energy Center suggests using a default loss factor of 12%.  
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Figure 15: Monthly numerical capacity factors of a 1.5MW wind turbine sited at Osceola County, IA  

(disregarding loss factor).  

 

Regional wind power supply 

Estimating the instantaneous distribution of overall wind power supply to a power system is 

important from various engineering reasons; frequency control, coordination and operation, 

and system reserves. From an economic point of view, the expectations regarding overall 

wind power supply may impact trade in futures markets for electricity and therefore 

electricity prices. 

There are two main approaches to study overall energy flow from wind projects in a region. 

In the first, the researcher estimates the stochastic nature of the problem by investigating the 

spatial correlation of wind speed. In the next stage, wind speed data is transformed into wind 

power according to the technicalities of the specific wind turbines employed in the analysis. 

In the second approach, recorded data of wind power output produced by wind farms is used 
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directly in the analysis. The advantage of the first approach is the ability to examine the two 

stages independently. In doing so, the energy potential in a region may be analyzed according 

to various scenarios of geographical spreads of wind farms. In addition, this approach is not 

limited to the specifics of wind turbines in the region in question. Therefore, the researcher 

has the flexibility to apply a range of assumptions about the future figures of wind energy 

conversions. On the downside, the estimation in the first approach requires much more data. 

Long term records of wind speed data from as many sites as possible of the region in 

question are required to account for a spatial trend in wind speed means. Then, simultaneous 

wind speed observations from these sites are needed for the spatial modeling. Moreover, 

even if spatial correlation is ignored, extensive wind speed data is still needed. Since the 

relation between wind speed and wind power is non-linear (and truncated) the knowledge of 

average wind speeds alone are insufficient. In effect, for wind power considerations, full 

description of long-run wind speed distributions are required. 

 

Wind spatial correlation 

In a pioneering work, Haslett and Raftery (1989) estimated the daily average wind energy at 

a new site for which only a short run data was available. In doing so, long term records at 

twelve meteorological stations in Ireland were utilized. Haslett and Raftery introduced an 

autoregressive integrated moving average (ARIMA) model for the space-time process of 

wind speed. The model was constructed based on the assumption that the second order 

moment of the space–time process is constant. Therefore it is separable and can be written as 
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a product of the two processes. Particularly, the cross-correlation between every two 

locations has been fitted by the function  

 X�" � v�F�Ún� 1 z  .r . � Q.r . � Q (3.11) 

where ��" is the distance between the two sites 	., Q�, � Ù T0,1Y and E w 0 are parameters.  

The empirical curve displays a strong spatial correlation (figure 16). The correlation of the 

daily average wind speed was above 0.5 even when reaching a range of 450 km between two 

locations in Ireland. The correlation level depends on the time interval which wind speeds 

observations are being averaged on. The study by Haslett and Raftery was based on daily 

average wind speeds, thus is not detailed enough for the purpose of valuing wind power. 

Since the price of electricity fluctuates greatly during the day as well, hourly wind speed data 

is more suitable.  

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

C
o

rr
e

la
ti

o
n

Distance (Km)

 

Figure 16: Empirical spatial correlation function of wind speed in Ireland. Source: Haslett and Raftery 
(1989) 
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At the second stage of the estimation, Haslett and Raftery approximated wind power output. 

The energy conversion ratio was oversimplified by assuming that generating wind power is 

proportion to wind power potential. Assuming that, the authors overestimated the potential 

output of wind turbines (i.e. ignoring zero output at wind speeds which are lower than the cut 

in point and higher than the cut out point). 

Cellura, et al. (2008) employed hourly data to study the spatial wind speed patterns for 

energy planning in Sicily. Specific Weibull density functions were fitted for each wind site 

and a complete geostatistics analysis was performed. The study shows how wind resources in 

a region may be evaluated taking into account the spatial nature of wind. However, Cellura, 

et al. did not consider wind power production in their study. 

Holttinen (2005) studied the hourly variation of wind power production directly. Real output 

data from the Nordic countries was utilized to examine wind energy variability in a large 

geographical scale. The cross-correlation of wind power production was fitted by the 

correlation function (3.11) for sites in an area where the maximum distance between sites is 

2,000 km (figure 17). The spatial correlation of wind power production was found to be 

strong for sites which are just a few hundred km apart, above 0.35 for sites which are 500 km 

apart and below 0.1 when the distance is about 1,200 km or more. Sinden (2007) portrayed 

very similar results studying cross-correlation between 2,080 pairs of wind power sites in the 

UK. The maximum distance between sites in that study was 1,200 km and at this range the 

correlation was also slightly under 0.1. Also depicted in figure 18, an extarpolation of spatial 

correlation functions fitted in studying wind energy in the Netherland (Gibescu, Brand and 
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Kling 2009; Landberg, et al. 1997), and a spatial correlation function fitted for a spread of 

4,500 km over locatinos in the EU (Giebel 2000). 
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Figure 17: Fitted cross correlation functions of wind power output, various studies 
 

Focken, et al. (2002) studied the effect of spatial distribution of wind farms on forecasting 

regional wind power. They considered wind power output data of about 9,000 wind turbines 

in Germany in 1999. Their study shows that the magnitude of the reduction of forecasting 

error depends only weakly on the number of wind sites and is mainly determined by the size 

of the region. Similar to the other studies, the spatial correlation of wind power was fitted by 

equation (3.11). In doing so, Focken, et al. were able to weigh the prediction improvement of 

aggregate wind power proposed by wind farms diversification. The study compared regions 

of diameter size of 370 km and 730 km. Interestingly, in both cases prediction error 

improved and reached a minimum level at around 50 turbines. A larger number of turbines 

did not enhance prediction precision. Normalizing a single site prediction error to 1, 
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prediction error in the smaller region was 0.63 while the larger region demonstrated error of 

size 0.53. 

 

Introduction to a wind-integrated electricity market 

Once wind capacity had been installed, the production of wind power is not a choice 

variable. Similar to electricity demand it is a stochastic process which may be predicted with 

some precision level. For that reason it is sensible to define the expected amount that needs 

to be generated by conventional power units as a net load. The distribution of the net load 

depends on the correlation between electricity demand and aggregate wind power production. 

Wind power output may move in the same direction as the system load in some regions while 

against it in others. However, there is no reason for the short-term fluctuations of wind power 

and system load to be related (Holttinen 2005; Wan and Liao 2006). If short-term 

fluctuations are indeed uncorrelated, expected net load may be expressed as 

 ¦ ¦ 	h � Û�«
j

ÜÝ
j

r�eh¬h�frÜeÛ¬ÛÞ f�h�Û (3.12) 

where Û is the hourly aggregate regional wind power output, ÛÝ  is the rated regional 

capacity, ÛÞ  is the prediction of aggregate wind power and rÜ	·� is the conditional 

probability distribution function of aggregate wind power. 

Integration of wind power capacity into deregulated electricity markets has two primary 

effects. While producers of conventional power face convex cost functions, the marginal cost 

of wind power is close to zero. Therefore, the regional marginal cost of producing overall 
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load is higher than the marginal cost of producing net load. Second, prediction of load minus 

available wind power has different statistical features than the prediction of overall load 

because it also includes errors in wind power predictions. The task of making correct 

predictions and balancing load under these terms is more complex since it involves stochastic 

processes of both demand and supply. Wan and Liao (2006) examine the change in the short 

term variation of load due to installation of wind power capacity. In their study 74 MW of 

wind energy (rated power) had been added to a conventional generation capacity of 1,400 

MW. This addition has the potential to account for 6% of electricity demand in peak load 

periods at the particular region of study. It was shown that at this penetration rate the increase 

in standard deviation of the net load compare to overall load is in the range of 3% in August 

to 18% in June. Looking at a six month average (June to November) an overall increase of 

8% in the standard deviation was computed.  

Recent experience of the Electric Reliability Council of Texas (ERCOT) may emphasize the 

complexity of predicting net load24. On Tuesday evening, February 26th, 2008 an emergency 

situation was announced when a sharp decline in wind energy production in west Texas 

occurred at the same time that electricity demand soared due to a sudden decrease in 

temperature. At that time, ERCOT electricity demand increased from 31,200 MW to a peak 

of 35,612 MW. Wind power production fell from more than 1,700 MW to only 300 MW. 

During that event some industrial electricity was curtailed and the emergency situation was 

ended in three hours (which is a sufficient time to activate most gas turbines). 

                                                           

24
 ERCOT manages a region with the largest installed wind power capacity in the U.S. At the first quarter of 

2008 Texas had about 5,300 MW wind power capacity installed, and by the end of 2008 this number jumped 

to 7,118 MW. 
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In a wind-integrated electricity market, firms need to consider the conditional distribution of 

the net load in making their financial decisions. Optimization problems should be formulated 

with respect to the distribution of the spot price, which in turn, is derived from the 

distribution of net load given the forecasts. These optimization problems are the focus of our 

next chapter.  
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Chapter 4: Theoretical framework for modeling wind-integrated electricity 

markets 

 

Introduction 

In this chapter we extend the electricity market model to account for the economic 

environment of markets with significant amount of wind power capacity. A wind-integrated 

electricity market model allows us to examine and compare the outcome and welfare 

distribution subject to various assumptions regarding the path for wind power expansion. In 

particular, we expand our model to analyze two key economic questions with regard to wind 

penetration rate. First, if the electric industry experiences market power, the question who 

invests in wind capacity may be important for welfare distribution and for identifying 

potential losses caused by a non-competitive behavior. Second, geographical diversification 

of wind power plants determines the probability distribution of aggregate wind power supply. 

Hence, one could ask what effect wind power diversification has on market equilibrium.  

We examine the situation where wind power is utilized fully by the system operator in real-

time whenever it is available. This is similar to the current situation in most deregulated 

electricity markets. In these markets wind power is not being traded regularly in the day-

ahead markets therefore it is not being priced directly. Instead, wind power producers receive 

the settled spot price which is determined by the price of the marginal MW of electricity 
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produced by the marginal fossil fuel generator. That way, the ISO utilizes all available wind 

power in real-time before dispatching power from fossil fuel resources. 

The results we derive in this chapter show that even though wind power is not priced directly 

it may have a substantial impact on how electricity from fossil fuel generators is priced. This 

is particularly true when market power exists in electricity markets. In addition, the 

theoretical framework presented in this chapter is developed with accordance to the objective 

of examining the impact of wind power diversification. We attend this question after 

introducing the required numerical methodology in chapter 5. 

 

Setup 

Wind power output is not a decision variable and it is not traded in the market for forward 

contracts. Therefore, the residual power that needs to be generated by fossil fuel generators in 

real-time is a pure probabilistic matter. We denote this amount as net load.25  

Net load is exogenous to electricity markets but wind power revenues are not. Since these 

revenues are contingent on the settled spot price, wind power producers would always prefer 

a higher spot price. For this reason, the presence of market power and the ability to 

manipulate the spot price make ownership of wind power capacity a key for understanding 

how electricity is priced in a wind-integrated market. 

                                                           

25 We assume that the net load is always positive. This is reasonable since a wind penetration rate higher than in 
the range of 20% to 30% (depending on the region) has reliability and other engineering constraints which have 
not been solved yet.  
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We start with some useful notation: recall that Û is the hourly aggregate regional wind 

power output and ÛÝ  denotes the regional rated wind power capacity. Effectively, this is the 

upper bound for aggregate wind power output in a region at a specified wind penetration rate 

(i.e. total wind power nameplate capacity in the region). The prediction of regional wind 

power at the time of trading forwards is denoted by ÛÞ , and the conditional distribution of the 

prediction of regional wind power is given by the conditional probability distribution 

function rÜeÛ¬ÛÞ f. 

Similar to the base model presented in chapter 2 (of no wind power), LSEs may choose to 

lock in (aggregately) hc units of electricity by purchasing forward contracts for the price 
c. 

But unlike the base model, the residual amount of energy that LSEs need to balance in real 

time accounts for the availability of wind power, that is h � Û � hc. Whether it is positive 

or negative, this amount would be settled against the spot price (if negative, a contract for 

differences is put into effect). After the spot market is cleared LSEs would make a monetary 

transfer of size 
̂ Û to the owners of wind power capacity. 

In the following, we solve for the outcome of the two-settlement process (i.e. forwards and 

spot markets) assuming wind energy is fully utilized by the system operator in real-time. We 

compare two cases: wind power capacity is owned by IPPs (Cournot wind capacity) or by an 

independent entity or entities which do not take part in electricity markets otherwise (fringe 

wind capacity). Historically, investments in wind capacity need to be subsidized to become 

competitive therefore the distribution of revenues generated by wind power is a policy 

question. We do not analyze in this study the long run incentives to invest in wind power 

capacity. Therefore, the two cases may be viewed as the outcome of a favorable policy or 



www.manaraa.com

101 

 

 

 

mandates for IPPs or other entities to invest in wind power capacity. Next, we give details 

about the optimization problems in each ownership case and the associated equilibrium 

outcomes. 

 

Cournot wind capacity 

Start by assuming that wind power capacity is part of the generation asset portfolio owned 

and operated by IPP firms. We keep the symmetric structure of the problem by assuming that 

wind power capacity is uniformly distributed among IPPs. Yet, we let realizations of wind 

power output to vary at the firm level. This in turn yields asymmetric profits. An IPP firm 

that has higher (lower) than average wind power output will have profits which are higher 

(lower) than average. 

Next, we need to acknowledge the difference in the implications of wind power forecasts at 

the aggregate and at the firm level. First, at the aggregate level, prediction of wind power 

supply provides information about the distribution of the spot price. Focusing on the 

symmetric solution, the knowledge of aggregate wind power is sufficient to foretell the spot 

price. That is because forward positions are identical across firms and competitive behavior 

in the spot market implies identical marginal costs. Therefore, similar to the base model, the 

spot price stands for the marginal cost of electricity production from conventional energy 

resources. Second, at the firm level, wind power prediction helps IPPs making more 

informed decisions about expected revenues in real-time. More about the importance of firm 

level prediction is discussed when IPP’s optimization problem is detailed. 
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Since the knowledge of firm level output is not important for the evolution of the spot price 

we can characterize the LSEs problem in terms of aggregate wind power. The LSEs 

maximization problem given the predictions of load and aggregate wind power at the time of 

trading forwards is 

� � max�� 
U ¡V]^_" ¢h�, � �£c6¤

6� ,6�" , ÛÞ ¥ � T
̀ � 
cY�c"  

� ¦ ¦ §
̀ � 
x ¡h, � �£c6¤
6� ,6�" , Û¥¨«

Ü
ÜÝ

j
� ©h � Û8 � �c" ª r�eh¬h�f rÜeÛ¬ÛÞ f�h�Û 

� ¦ ¦ §
̀ � 
x ¡h, � �£c6¤
6� ,6�" , Û¥¨«

Ü
ÜÝ

j
� Û8 r�eh¬h�f rÜeÛ¬ÛÞ f�h�Û  .  

(4.1)  

The first two terms are the familiar expressions describing payoffs from trading electricity in 

forward and spot markets. The third term is the financial payoff for utilizing wind power in 

real-time. Substituting for the expected spot price and collecting terms we get 
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(4.2) 

Taking the derivative of the objective function with respect to the decision variable and with 

further algebraic steps we get the following FOC 


c � UT
̂ 	·�Y � �xg8 ¦ ¦ 	h � hc�«
��IÜ

r�eh¬h�fÜÝ
j

rÜeÛ¬ÛÞ f�h�Û . (4.3) 

LSEs willingness to pay for the marginal forward contract reflects the cost they expect to 

face in order to purchase the marginal MW for their end-consumers at the spot market. This 

cost accounts for the expected spot price plus the expected penalty for not scheduling the 

marginal unit for delivery in advance (associated with turning on the marginal power 

generator). The optimality condition is integrated over all possible realizations of wind power 

output. Substituting for the deterministic case where rÜeÛ � 0¬ÛÞ f � 1, this FOC coincides 

with the demand curve of the base model of no wind power. In this sense the demand curves 
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developed in this section may be seen as a generalization of the one produced by the base 

model in chapter 2. 

As noted earlier, in order to analyze the IPPs problem one should account for both aggregate 

and a firm’s prediction of wind power output. The knowledge of both helps IPPs to make 

more informed decisions in the forwards market. That is because each IPP’s revenues from 

wind power depend on the distribution of its own output and the distribution of the spot price 

which is in turn depends on the distribution of aggregate wind power.  

The prediction of wind power output for the delivery period in question and rated wind 

power capacity (fixed over all periods) of each IPP firm are denoted by âã  and âÝ  

respectively. We denote the conditional probability distribution function of wind power 

output of each IPP by rÏ	zâ|âã� with mean Ï and variance �Ï) . Therefore the conditional pdf 

of the regional aggregate output  rÜezÛ|ÛÞ f has mean gÏ and notice that the variance is 

between g�Ï)  and g)�Ï) . The lower bound corresponds to the case of uncorrelated wind and 

the upper bound to the case of a fully correlated wind power output.  

If there is an aggregate smoothing effect it improves the prediction of the spot price but does 

not offer any benefit for the prediction at the firm level output. Therefore, in maximizing 

profits, each wind power producer needs to consider the statistics of its own expected output 

as well as the expected aggregate regional output. Finally, the joint conditional probability 

distribution function of wind power output at the firm level and the output at the aggregate 

level is denoted by rÏ,Üezâ, Û|ÛÞ f. 

Each IPP’s expected profits are given by  
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(4.4) 

where the last term stands for the IPPs’ expected revenues from owning wind power 

capacity.  

Express ́  with respect to the two states of the world (i.e. conventional capacity traded in 

advance is sufficient or insufficient to meet realized net load) 
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(4.5) 

Taking the first derivative 
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(4.6) 

Writing explicitly the derivatives of the spot price and the cost function 
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(4.7) 

Employing symmetry and collecting terms  
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(4.8)  

 

The FOC is 
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(4.9)  

The first derivative of the forward price with respect to quantity is 

�
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j

rÜeÛ¬ÛÞ f�h�Û . (4.10) 
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Solving for the symmetric Cournot-Nash equilibrium where �c � �c) � k � �c| � �c gives 

the following optimality condition 


c	·� � T
x	·�Y � �cÃ �xg ©1 � 18ª ¦ ¦ r�eh¬h�f«
��ÃIÜ

ÜÝ
j

rÜeÛ¬ÛÞ f�h�Û 

��x ©1 � 1gª ¦ ¦ 	� � �cÃ �r�eh¬h�f«
��ÃIÜ

ÏÝ
j

rÜezÛ|ÛÞ f�h�Û 

� �xg ¦ ¦ ¦ â«
��ÃIÜ

r�eh¬h�fÜÝ
Ï

ÏÝ
j

rÏ,Üezâ, Û|ÛÞ f�h�â�Û . 

(4.11) 

It can be verified that the SOC holds in the same manner it is exemplified in the base model 

(appendix 2).  

Next, by equating aggregate inverse demand with aggregate inverse supply one can show that 

equilibrium is characterized by the aggregate number of forward contracts that solves 

(numerically) the following equation 

hcÃ � ©g8 � g � 8g8 � g � 1ª � Ä Ä hr�eh¬h�f«��Ã IÜÜÝj rÜeÛ¬ÛÞ f�h�Û
Ä Ä r�eh¬h�f«��Ã IÜÏÝj rÜezÛ|ÛÞ f�h�Û

� © g8g8 � g � 1ª
� Ä Ä Ä â«��ÃIÜ r�eh¬h�fÜÝÏÏÝj rÏ,Üezâ, Û|ÛÞ f�h�â�Û

Ä Ä r�eh¬h�f«��ÃIÜÏÝj rÜezÛ|ÛÞ f�h�Û    . 
(4.12) 
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Substituting this result back into the inverse demand (or inverse supply) function we get the 

equilibrium forward price 


c	hcÃ�
� UT
x	·�Y � �xg8 © 8 � 1g8 � g � 1ª ¦ ¦ h«

��IÜ
r�eh¬h�fÜÝ

j
rÜeÛ¬ÛÞ f�h�Û

� � �xg8 � g � 1� ¦ ¦ ¦ â«
��ÃIÜ

r�eh¬h�fÜÝ
Ï

ÏÝ
j

rÏ,Üezâ, Û|ÛÞ f�h�â�Û . 
(4.13) 

Notice that the first term describing the equilibrium number of forwards traded is identical to 

the expression describing the equilibrium number in the base model when replacing the 

statistical properties of net load with these of overall load26. This observation is also true for 

the first two terms describing the equilibrium forward price27. The additional terms in the 

RHS of (4.12) and (4.13) are attributed to the fact that IPPs own wind power capacity.  

Revenues from wind power output are determined by the realized spot price. When 

scheduling power for delivery in advance (i.e. forward contracting) the expected spot price 

decreases due to the availability of more power generation capacity. Therefore, a higher 

volume of trade in forwards yields a lower expected spot price and thereby reduction in the 

expected revenues for wind power output. IPPs internalize the linkage between the revenues 

from the number of forward contracts they sell and the expected revenues from wind power 

                                                           

26 Recall that the equilibrium number of forward contracts in the base model is described by 

 hcÃ � �|¤I|�¤|¤I|I � � Ä �∞å�Ã æå	�|���n�
Ä æå	�|���n�∞å�Ã   

27 The equilibrium forward price in the base model is described by 
c	hcÃ� � UT
̂ 	·�Y � J�|¤ � ¤I |¤I|I � Ä h∞��Ã r�eh¬h�f�h 
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output. Therefore, IPPs’ incentive to withhold capacity in the forwards market in this case is 

higher than in the case which they do not own wind power capacity. Consequently, the 

change in the forward premium in this case represents more than just a shift from the 

statistical attributes of overall load to these of net load. It also accounts for the ability of IPPs 

to exercise excess market power when they are the owners of wind power capacity. 

 

Fringe wind capacity 

In this section we look at the situation where the owners of wind power capacity do not have 

market power or any flow of income from electricity markets other than compensation for 

their wind power output. That is to say that wind power is supplied by competitive fringe 

firms. This is a meaningful case because it includes the examples whereby a government 

agency or several small private firms invest in wind power capacity and no strategic behavior 

is involved. 

LSEs’ maximization problem in this case is similar to the case whereby wind capacity is 

owned by IPPs. The fact that the recipient of wind power payments is another entity does not 

change LSEs behavior. Therefore, the demand curve is identical to the previous case, where 

IPPs own wind capacity. 

IPPs revenues in the case of fringe capacity are based on the output of conventional power 

exclusively. Therefore the maximization problem is 
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´ � maxl�� U µV\??� ¶h�, � �·c4
|

4� ,4�� , ÛÞ ¸
� 
c µh�, �c� � � �·c4

|
4� ,4�� , Û¸ � �c�

� ¦ ¦ ¹
x µh, �c� � � �·c4
|

4� ,4�� , Û¸ � e�� � �c� f«
Ü

ÜÝ
j

� :e��, �c� fº r�eh¬h�f rÜezÛ|ÛÞ f�h�Û  . 

(4.14)  

Express ́  with respect to the two states of the world 

´ � 
c µh�, �c� � � �·c4
|

4� ,4�� , ÛÞ ¸ � �c�

� ¦ ¦ »
x	h, Û� � e�� � �c� f∑ l·��½�,�±�, Il�� IÜ
Ï

ÏÝ
j

� :e��f¼ r�eh¬h�f rÜezÛ|ÛÞ f�h�Û
� ¦ ¦ ¹
x µh, �c� � � �·c4

|
4� ,4�� , Û¸«

∑ l·��½�,�±�, Il�� IÜ
ÏÝ

j

� e�� � �c� f � :e�� , �c� fº r�eh¬h�f rÜezÛ|ÛÞ f�h�Û  . 

(4.15)  

Taking the first derivative 
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� ´��c� � �
c	·���c� �c� � 
c	·� 

� ¦ ¦ 
x	·�∑ l·��½�,�±�, Il�� IÜ
Ï

r�eh¬h�fÏÝ
j

rÜezÛ|ÛÞ f�h�Û 

� ¦ ¦ ¿�
x	·���c� � e�� � �c� f � 
x	·� � À�����c� � 1Á«
∑ l·��½�¾�,�±� Il��

ÏÝ
j

� :çe��, �c� fÂ r�eh¬h�f rÜezÛ|ÛÞ f�h�Û . 

(4.16) 

Writing explicitly the derivatives of the spot price and the cost function 

� ´��c� � �
c	·���c� �c� � 
c	·� 

� ¦ ¦ 
x	·�∑ l·��½�,�±�, Il�� IÜ
Ï

r�eh¬h�fÏÝ
j

rÜezÛ|ÛÞ f�h�Û 

� ¦ ¦ ¿� �xg � e�� � �c� f � 
x	·� � À�����c� � 1Á � ���� �����c�
«

∑ l·��½�¾�,�±� Il�� IÜ
ÏÝ

j
� �xe�� � �c� f À�����c� � 1ÁÂ r�eh¬h�f rÜezÛ|ÛÞ f�h�Û . 

(4.17) 

Employing symmetry and collecting terms  

� ´��c� � �
c	·���c� �c� � 
c	·� � UT
x	·�Y 
��x ©1 � 1gª ¦ ¦ e�� � �c� fr�eh¬h�f«

∑ l·��½�¾�,�±� Il�� IÜ
ÏÝ

j
rÜezÛ|ÛÞ f�h�Û . 

(4.18) 
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The FOC is 


c	·� � UT
x	·�Y � �
c	·���c� �c�  

��x ©1 � 1gª � ¦ ¦ e�� � �c� f«
∑ l·��½�¾�,�±� Il�� IÜ

ÏÝ
j

r�eh¬h�frÜezÛ|ÛÞ f�h�Û . 
(4.19) 

Writing explicitly the IPPs’ FOC and imposing clearing market condition 


c	hcÃ� � UT
̂ Y � �cÃ �xg ©1 � 18ª ¦ ¦ r�eh¬h�f«
��ÃIÜ

ÜÝ
j

rÜeÛ¬ÛÞ f�h�Û 

� �x	g � 1�g ¦ ¦ 	h � hcÃ�r�eh¬h�f«
��ÃIÜ

ÏÝ
j

rÜezÛ|ÛÞ f�h�Û . 
(4.20) 

Equating aggregate inverse demand and inverse supply, the equilibrium number of forward 

contracts in this case is described by 

hcÃ � ©g8 � g � 8g8 � g � 1ª � Ä Ä hr�eh¬h�f«��ÃIÜÜÝj rÜeÛ¬ÛÞ f�h�Û
Ä Ä r�eh¬h�f«��ÃIÜÏÝj rÜezÛ|ÛÞ f�h�Û  (4.21) 

and the forward price is  
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c	hcÃ� � UT
x	·�Y 
� �xg8 © 8 � 1g8 � g � 1ª ¦ ¦ h«

��ÃIÜ
r�eh¬h�fÜÝ

j
rÜeÛ¬ÛÞ f�h�Û . (4.22) 

Both expressions are identical to these of the base model respectively when taking into 

account the statistics of net load instead of overall load. Because wind power is owned by a 

competitive entity, no additional market power is given to IPPs and thus the resemblance 

between the equilibrium expressions in this case and these of the base model. In the case of 

fringe capacity, IPPs’ incentive to maintain a high spot price is lower than in the case that 

they are the owners of wind capacity. As a result, more forwards are being traded which 

brings relatively more conventional capacity online in advance. This in turn, lowers expected 

marginal cost and the expected spot price. 

 

Chapter summary 

In this chapter we expanded the theoretical framework to allow the modeling of wind-

integrated electricity markets. In doing so, we accounted for the decrease in the employment 

of conventional energy resources due to the availability of wind power capacity. Also, we 

modeled risk management behavior in the forwards market, which are strongly influenced by 

the new uncertainty introduced from the supply side of the market. Our analytical work 

provides transparent, traceable and robust results for equilibrium measures of electricity 

markets with wind energy. The question who invests in wind power capacity is important as 

the electric industry structure has an effect on the amount of conventional generation 
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capacity that is traded in advance, thereby impacts equilibrium prices and premiums as well. 

Our main result is that IPPs have a higher incentive to withhold capacity in the forwards 

market in the case which they are the owners of wind power capacity. Consequently, in this 

case prices of electricity in both spot and forward markets are higher compared to the case 

where wind power capacity is owned by fringe firms. 

Employing high frequency historical data, one can calibrate this model and obtain testable 

empirical results. Since the research question is about the future expansion of wind capacity, 

the required data for this purpose does not exist yet. Instead, we need to introduce the 

appropriate numerical methodology to simulate the possible paths for wind power expansion. 

This is the objective of the next chapter. 
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Chapter 5: A numerical method for simulating the conditional distribution 

of regional wind power output for modeling trade of short-term electricity 

forwards 

 

Introduction 

Information about future availability of overall wind energy at the power system is valuable 

for both technical and economic reasons. In this chapter we are interested in simulating the 

information that is accessible to firms for the purpose of modeling their behavior in futures 

markets for spot power. To carry out this task we need to look at the short-term distributional 

patterns of wind power forecasting because that is the timeframe for the operation of the day-

ahead markets. By that time, low resolution outputs from numerical weather prediction 

models (NWP), as well as downscaling tools (which make use of physical conditions to 

obtain higher resolution forecasting) are already accounted for. Then, statistical models take 

these predictions as inputs for shorter forecasting horizons, which is the forecasting time 

framework we are interested in simulating in this chapter. 

The initial step is attaining wind speed forecasts at the locations where wind power capacity 

is installed. Yet, simulating wind speed forecasts is not easy because one should account for 

wind speed variability and the need to predict wind speeds at several locations 

simultaneously. In addition, errors in wind speed forecasts translate into errors in wind power 

forecasting, which are translated into large errors in energy output. These forecasting errors 
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may be substantial because of the non-linear nature of the power curve. For all these reasons 

wind speed forecasts is an important part of the simulations.  

In the following we propose a novel methodology for the simulations of the uncertainty 

regarding the availability of wind power in the day-ahead market. For that purpose, we use 

the joint distribution of wind speed and wind speed forecasting, their conditional and 

marginal probability density functions, and the specifications of a wind power curve. To 

model aggregate regional wind power, we make use of a method first proposed by Iman and 

Conover (1982) to impose spatial wind correlation in the simulated region. 

 

Simulating wind speed forecasts at one location 

Consider the joint probability distribution function (pdf) of wind speed and a short-term wind 

speed forecast (e.g. day-ahead) for a particular location. Denote this pdf by rÏ,Ïã 	â, âã� where 

â is wind speed and âã  is wind speed forecast. By the laws of probability this may be written 

as 

rÏ,Ïã 	â, âã� � rÏ|Ïã 	â|âã�rÏã 	âã� (5.1) 

where rÏ|Ïã 	â|âã� is the conditional pdf of wind speed given wind speed forecast, and rÏã 	âã� 

is the marginal pdf of wind speed forecast. Then, the marginal pdf of wind speed is given by 

rÏ	â� � ¦ rÏ|Ïã 	â|âã�rÏã 	âã��âãÏã  . (5.2) 

Next, assume a particular (Weibull) pdf rÏã 	âã� for wind speed forecast. The assumption 

regarding the particular conditional pdf to employ in the experiment is not important for the 
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purpose of implementing the proposed method. Therefore, in line with the findings from the 

relevant literature (e.g. Giebel 2001, Landberg 1994 and Lange 2005) we assume that this 

conditional pdf is normally distributed and centered at the forecasted value. (That is, 

forecasts are unbiased). Also, we need to account for the pronounced heteroscedasticity in 

wind speeds. To be precise, we assume the variance of wind speed forecast errors is non-

decreasing in the magnitude of the forecasted value. Formally 

â|âã~8eâã, �)	âã�f (5.3) 

where ��) �âã⁄ w 0 

Then, we generate values of wind speed and wind speed forecasts by means of the following 

Monte-Carlo simulation: 

1. Make draws directly from the pdf rÏã 	âã�. 

2. Use (5.3) to construct a numerical conditional pdf of wind speed rÏ|Ïã 	â|âã�. Notice that 

during this process negative values of wind speed may appear. We show later how to 

avoid this problem when we parameterize the variance of â|âã. 

3. Use (5.2) to integrate over wind speed forecasts and compute the marginal pdf of wind 

speed rÏ	â�. 

4. Adjust the parameters of rÏã 	âã� and repeat the process till the resemblance between the 

simulated rÏ	â� and the desired wind speed pdf for the experiment is within an 

acceptable range. (More details are provided in the example below). 
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Simulating wind power forecasts at one location 

We assume that all turbines in a given location experience the same wind speed. Therefore, 

wind power output at this location increases linearly in the number of turbines installed. This 

is a reasonable simplification because the correlation in wind speed within large wind farms 

is likely very high. Considerations of the aerodynamics interaction between turbines for 

maximizing power production in wind farms are discussed elsewhere (e.g. Mosetti, Poloni 

and Diviacco 1994). 

We proceed with the Monte Carlo simulation as follows: 

5. Specify a power curve of a modern wind turbine to be employed in the experiment.  

6. Use the turbine’s power curve to translate the draws of wind speed forecasts into draws 

of wind power output of each turbine. 

7. Multiply wind power output of a single turbine by the number of turbines installed to 

arrive at the aggregate output in the simulated location. 

 

Simulating wind power forecast errors at one location 

8. Draw from rÏ|Ïã 	â|âã� once again to specify a particular wind speed realization in each 

simulated delivery period.  

9. Use wind speed realization to compute realized wind power output in each simulated 

period using the power curve and the number of wind turbines installed at the simulated 

location. 
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10. Integrate over wind power realizations to compute numerical capacity factor of the 

employed wind turbine.  

11. Calculate prediction error in each realization to compute mean absolute error (MAE) of 

wind power forecast across all delivery periods. 

 

Calibration and verification 

1. The performance of wind power forecasting systems is measured generally by MAE. 

This is computed as 

gZU � 18 �|ZB�èC�� � ;dXFBC���|¤
��   . (5.4) 

This statistic is usually reported as a percentage of total installed wind capacity or as a 

percentage of actual energy produced. Adjust the parameterization of σ)	wã� such that the 

numerical MAE of wind power forecast in the experiment and the empirical MAE 

reported by the literature are the same. 

2. Verify that the numerical capacity factor of the simulated wind turbine matches the 

reports on the empirical performance of the assumed commercial wind turbine employed 

in the experiment (capacity factor is discussed in chapter 3). 
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An example of wind power simulation at one location 

Start by assuming the following pdf for the short-term wind speed forecast28  

âã~ÛF.	9.35, 2.76�  . (5.5) 

The first and second moments of this distribution are 8.33 and 10.68 respectively.  

We parameterize �)	âã� � �)âã ) and let �ì)=0.05 (illustrated in figure 18)29. Setting the 

variance that way serves two purposes; first, it is realistic to assume that the variance 

increases monotonously in the magnitude of wind speed forecast, secondly, this 

parameterization produces very small errors in the case that the forecasted value is low and 

by that diminishes the likelihood of the algorithm to generate negative values of wind speed 

while constructing the conditional pdf. 

 

Figure 18: Variance of the conditional wind speed in the experiment 
 

The numerical marginal pdfs of wind speed and wind speed forecast were generated by 5,000 

draws and depicted in figure 19. 
                                                           

28 See table 3, this is the distribution of wind speed we fitted at Osceola County, IA in a typical March. 
29

 The assumption σã)=0.05 is made only for illustration purposes at this point. However, we use this particular 
value in the numerical experiment in chapter 6 to generate a desired MAE. 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

forecasted wind speed

va
ri
an

ce



www.manaraa.com

123 

 

 

 

 

Figure 19: Numerical marginal pdf of wind speed forecast (top) and wind speed (bottom)  
 

Table 4: Moments and parameters of the numerical marginal pdfs of wind speed and wind speed 
forecast 

 Mean Variance 
Fitted Weibull 

scale parameter 

Fitted Weibull 

shape parameter 

Wind speed forecast 8.33 10.68 9.35 2.76 

Wind speed 8.32 14.67 9.40 2.31 

 

The illustration and the point estimates (table 4) show that assuming wind speed forecast is 

distributed Weibull provide a good fit for a Weibull distribution of wind speed. The means of 

the pdfs are approximately the same. This result is expected since we employ an unbiased 
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wind speed forecast in the experiment. However, the variance of the assumed pdf for wind 

speed forecast is smaller than the variance of the pdf for wind speed. This is due to the 

introduction of the disturbance term associated with forecasting error. Our goal is to find 

values for the parameters of the Weibull function describing the forecasts, which will 

generate the desired moments of wind speed for the experiment. Notice that wind speed and 

wind speed forecast have the same mean, thus the two parameters of the Weibull pdf for 

wind speed forecasts should be a pair that generates the mean of the desired wind speed pdf. 

Since we have two parameters there is infinite number of pairs that qualify. Recall that the 

mean value of a random variable distributed Weibull is  

� � BΓ	1 � 1 R⁄ � (5.6) 

where B and R are the scale and shape parameters respectively, and Γ	·� is the gamma 

function. 

The total differential is 

�� � ���B �B � ���R �R  . (5.7) 

By linear approximation, we may write 

∆� � Î	1 � 1 R⁄ �∆B � BR�)Îä	1 � 1 R⁄ �∆R  . (5.8) 

Since wind speed forecasting in unbiased, we impose ∆� � 0 and get the following 

expression 

∆B∆R � BR) Ø	1 � 1 R⁄ � 
(5.9) 

where  Ø	1 � 1 R⁄ � � îï	 I Æ⁄ �î	 I Æ⁄ �  , is the Psi function (also known as the digamma function). 
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Equation (5.9) provides an expression for the relation between the pairs of Weibull 

parameters that approximate the same mean as that of the particular pair R and B. As long as 

we change B and R with accordance to condition (5.9) we know that the mean of the two 

marginal distributions remains approximately the same. The next step is to pick a pair that 

provides us with the desired variance for the target pdf of wind speed. This is not a difficult 

task, which may be accomplished by a standard numerical search technique. For example, a 

simple computation shows that if we wanted to generate a pdf of wind speed which is similar 

to the estimated March hourly wind speed distribution in Osceola County (eq. 5.5), we 

should start the Monte Carlo simulation by assuming âã~ÛF.	9.26, 3.51�. 

To convert simulated values of wind speed to wind power output a power curve of a modern 

1.5 MW turbine is used. This curve is depicted in chapter 3 (figure 14). A wind turbine of 

this rate is chosen as it is a fairly large machine which is appropriate for regions with 

excellent conditions of wind resources (wind speed between 7.5 and 8 m/s at 50 m height). 

Larger commercial machines which are suited for outstanding (8-8.8 m/s) or superb (>8.8 

m/s) wind conditions may be considered as well. However, study on the penetration rate of 

wind power capacity requires that the employed turbine size in the experiment should be with 

accordance to the availability of spatial wind power resources. Regions of outstanding and 

superb wind conditions in the U.S. are scarce and many of them do not provide any certainty 

of delivering stable large flow of wind power during most months and for a large 

geographical dispersion.  

Next, we want to examine how the magnitude of wind speed forecast influences the 

distribution of wind power forecast (figure 20). While the conditional pdfs of wind speed in 
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all cases are Gaussian by assumption, the shape of the conditional pdf of wind power is far 

from being Gaussian. It varies by the magnitude of the forecasted value and has no 

recognizable form. The reason for that is the nonlinear nature of the power curve. For 

example, wind power output is truncated on both sides. Namely, for periods with wind speed 

forecasts from the tails of the distribution, the probability of zero wind power output is high. 

If the forecasted value is sufficiently low, it is expected that wind speed would not exceed the 

cut-in point and therefore it most likely that no power would be generated. This is described 

in figure 20 by the case that the wind speed forecast is 2 m/s. Likewise, a high forecasted 

value entails higher probability that the turbine may attain its cut-off point, and cease power 

generation to protect itself from damage. That is depicted in figure 20 in the case of wind 

speed forecast of 25 m/s. Recall that 25 m/s is the cut-off speed, therefore it is shown that 

about half of the time the turbine generates its rated power and in the rest nothing. For wind 

speeds between the cut- in point and 14 m/s which is the rated-speed (wind speed at which 

the turbine generates its rated power) the power curve is convex, which implies that small 

deviations in wind speed in this segment yields large asymmetric deviations of wind power. 

Those are reflected by the depicted graphs for wind speed forecasts of 5, 8, 12 and 16 m/s in 

figure 20. 

Our results show that the conditional pdfs of wind power forecasting error are not Gaussian. 

However, integrating out the forecasts, the unconditional distribution of forecasting error 

seems like a dense normal distribution (figure 21). This result is in line with several empirical 

studies that show that wind power prediction errors may be represented (at least) loosely by a 
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Gaussian distribution (see Blatchford and Zack 2004, Loutan and Hawkins 2007, Madsen et 

al. 2004, and Pinson and Kariniotakis 2004).30 

For modeling trading decisions, it is the conditional distribution of wind power forecasting 

errors that is important. That is because financial consequences of trading decisions in futures 

markets are drawn from the distribution of wind power given a short-term forecast. 

Averaging over the 5,000 draws (periods) in the experiment, we compute wind power plants’ 

capacity factor of 51% and mean absolute error as percentage of installed capacity of 14%. 

 

  

                                                           

30 Blatchford and Zack (2004) and Loutan and Hawkins (2007) studied the predictions of the central wind 
forecasting system in California ISO. Pinson and Kariniotkais (2004) presented forecast errors for a case study 
of a single wind farm in Ireland. Finally, Madsen et al. (2004) studied the performances of more than 10 
prediction systems in Europe as part of a project of the European Union Commission. 
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UTâ|âãY = 2 m/s 

 

UTâ|âãY = 5 m/s 

 

UTâ|âãY = 8 m/s 

 

UTâ|âãY = 12 m/s 

 

UTâ|âãY = 16 m/s 

 

UTâ|âãY = 25 m/s 

Figure 20: Conditional wind speed, the associated conditional wind power distributions and the 
distributions of wind power forecasting error given wind speed forecasts of 2, 5, 8, 12, 16 and 25 m/s 
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Figure 21: The unconditional distribution of wind power forecasting error at one location (kW) 
 

 

Aggregate regional wind power output 

In the following we consider a study region composed of several wind site locations where 

there is a short-term wind speed forecast available at each location. The goal is to simulate 

wind speed forecasts and realizations that are consistent with correlated forecasts and the 

spatial nature of wind speed.  
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In general, the forecasting error of wind power output from several sites is lower than 

forecasting errors from a single site. How fast and to what extent these errors are reduced 

with the addition of wind capacity depends primarily on the size of the region and how 

spatially correlated wind is in the region. The geographical distribution of wind farms in a 

region determines the distribution of regional wind power output. 

For the purpose of imposing spatial correlation we employ a method that was introduced by 

Iman and Conover (IC) in 1982. The method is used in a large variety of applications where 

there is a need to generate correlated random numbers (see for example, Brus and Jansen 

2004, Hart, Hayes and Babcock 2006, Maia and Neto 2004, and Wu and Tsang 2004). The 

technique is distribution free, preserves the exact form of the marginal distributions on the 

input variables and simple to use. The theoretical basis of the IC method is that independent 

random numbers drawn from independent marginal distributions can be sorted to comply 

with any desired rank correlation matrix. 

Let Z be a R by � matrix corresponded to R draws from � independent marginal 

distributions. If : is a target correlation matrix for Z then we know that since : is positive 

definite and symmetric, there exists a lower triangular matrix 
 such that 

’ � : and Z
ä 
has the target correlation matrix :. This is the theoretical basis for the IC method. 

The objective is to find a rank correlation matrix g that is sufficiently close to the desired 

correlation matrix :. In order to do so, the IC method requires defining a score matrix. For 

the score matrix, Iman and Conover (1982) suggest using ranks, random normal deviates or 

van der Waerden scores. We adopt the latter method which is employed in the original paper. 

Let t be a R by � score matrix where each of its columns comprise from a random mix of the 
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van der Waerden scores. That is a	.� � Φ� e./	8 � 1�f for . � 1 … 8, where Φ�  is the 

inverse function of the standard normal distribution. Then, find a lower triangular 
, which is 

associated with the target correlation matrix :. Two common ways to compute 
 are through 

Cholesky factorization and singular value decomposition. The score matrix t is multiplied 

by 
ç to transform its columns such that the transformed matrix, denoted by tÃ, has a rank 

correlation g which is close to :. 

To improve the similarity between the matrices g and :, Iman and Conover (1982) suggests 

proceeding as follows. The difference between g and : is explained partially by t not 

having a sample correlation equal to the identity matrix ò. The goal is to decrease the 

variance of the transformation matrix in order to reduce the dissimilarity. For that purpose, a 

matrix ó should be found such that ó9ó’ � : where 9 is the sample correlation of t. First, 

compute a lower triangular > such that 9 � >>’. Then, recall that : � 

’, so we can 

write ó>>’ó’ � 

’. From that we know that ó> � 
 or ó � 
>� . Therefore, the matrix 

denoted by tôÃ � tóä has the exact correlation matrix : and a rank correlation gÃ, which is 

closer to : than g is. 

While the implementation of the IC method for our purpose is straightforward, we need to 

explain how to derive the matrix : to simulate spatial correlation in our application. Start, by 

defining a study region for the experiment. In theory, the shape of the study region is 

relatively unimportant as long as it is not too small to capture the full range of spatial 

variation in the underlying process (Diggle and Ribeiro 2007). Let õ be a square lattice which 

is divided into � by � symmetric locations 
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õ � §õ , k õ ,6ö ÷ öõ6, k õ6,6¨ (5.10) 

Denote by ∆ the side length of each location. Notice that ∆ is also the Euclidean distance 

between the centers of any two orthogonal nearest neighbor locations (likewise, √2∆ is the 

Euclidean distance between the centers of any two diagonal nearest neighbor locations). 

The next step is to specify the stochastic nature of the spatial process. For example, if wind 

speed experiences the same distribution at all locations, and spatial correlation depends only 

on the distance between locations then the process is stationary. Conversely, wind speed may 

experience spatial trend. For instance, differences in the mean may be explained by the 

coordinates of the location on the study region. Another example for non-stationarity is due 

to the existence of directional effects on the correlation structure. Notice that our theoretical 

framework does not put any restrictions on the structure of the spatial correlation to be 

employed in the numerical experiment. Spatial correlation may be described by any function 

of the Euclidean distance, the coordinates of õ or other factors affecting the �) by �) 

correlation matrix :. 

Next, we make �) draws from the pdf rÏã 	âã� in each simulation. These are the (unsorted) 

wind speed forecasts at �) locations. Each draw is used as row entries in a matrix denoted 

as Z. Suppose we make R draws in the experiment, Z’s dimensions are R by �).  

Once matrices Z and : are defined, the IC method can be applied for imposing spatial 

correlation among local wind speed forecasts. The imposition of spatial correlation on the 

forecasts is reasonable because forecasting systems run on low resolution models as first step 
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and therefore use predictions of regional scale events as inputs before physical downscaling 

tools31 are being implemented.  

After we generate local wind speed forecasts, we proceed with the Monte Carlo simulation in 

each location as elucidated earlier. That way, we obtain local and aggregate conditional pdfs 

of the short-term wind power forecasting. Those are valuable for us as they will be used as 

inputs for modeling traders’ decision making in the next chapter.  

 

An example of simulating spatially correlated wind 

Generally, wind speed should be considered as a non-stationary spatial process because of 

the physical conditions which are never entirely homogenous over a geographical region. 

However, since our experiment does not relate to a specific region, we would not want to put 

restrictions at this stage on the analysis. As argued earlier, for applied purposes, one can 

impose any specific spatial wind structure to this framework without adding complexity to 

the analysis.  

Assuming stationarity, the Euclidean distances alone are sufficient to construct the desired 

correlation matrix :. We carry on our example with an exponential correlation function since 

this is the one that is commonly chosen to describe wind spatial correlation (see references in 

chapter 3).  Ignoring a nugget effect, the correlation function is 

                                                           

31 Physical downscaling tools refer to the utilization of high resolution spatial data such as topography and 
roughness to refine forecasting at the site level. 
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X�" � F�Ún�  (5.11) 

where ��" is the Euclidean distance between any two locations . and Q, and the value of the 

parameter E (known as the characteristic distance) needs to be calibrated.  

Let � � 10 and ∆� 100 km, with a region of size 1,000 km², which is divided into 100 wind 

locations. The literature regarding wind spatial correlation is quite limited and the few 

empirical studies reviewed earlier, are about wind statistics in European countries (see 

chapter 3). In line with this literature we set E � 0.002. The spatial correlation of wind speed 

for the experiment is illustrated in figure 22.  
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Figure 22: Wind spatial correlation in the experiment 
  

Making use of the spatial correlation function while accounting for the coordinates of wind 

locations we compute the correlation matrix :. That is the correlation to be imposed while 

simulating wind speed forecasts in the region study. 
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The Monte Carlo experiment consists of 5,000 draws. We draw independently for all wind 

locations from the pdf of wind speed forecast that is used in previous example (eq. 5.5). That 

gives us a matrix Z of 5000 by 100 random draws. To generate the score matrix t we 

randomize the van der Waerden scores in each column. The required lower triangular 

matrices 
 and > are computed by Cholesky factorizations. Deriving the matrix denoted by 

tôÃ  we get the exact correlation matrix : and a rank correlation gÃ. Finally, each column of 

Z is resorted according to the ranks in the columns of tôÃ . Doing so, we generate rank 

correlation  gÃ among the columns of Z while preserving the marginal distributions of the 

forecasts in each wind location.  
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Table 5: Wind speed forecasts: target correlation (top) simulated correlation of wind speed forecast 
(center) and simulated correlation of wind speed realization (bottom) 

 … õÖ  õÖ) õÖÖ õÖÌ õÖø õÖù õÖú õÖû õÖü õÌj õÌ … 

ö õÖ  1 

0.8187 

0.8062 

0.5895 

0.6703 

0.6602 

0.4779 

0.5488 

0.5389 

0.4090 

0.4493 

0.4464 

0.3240 

0.3679 

0.3591 

0.2835 

0.3012 

0.2972 

0.2251 

0.2466 

0.2411 

0.1762 

0.2019 

0.1924 

0.1423 

0.1653 

0.1597 

0.0982 

0.8187 

0.8069 

0.6004 õÖ) 

 1 

0.8187 

0.8099 

0.5886 

0.6703 

0.6577 

0.4984 

0.5488 

0.5391 

0.3859 

0.4493 

0.4346 

0.3174 

0.3679 

0.3585 

0.2620 

0.3012 

0.2899 

0.2135 

0.2466 

0.2326 

0.1731 

0.2019 

0.1921 

0.1368 

0.7536 

0.7396 

0.5431 õÖÖ 

  1 

0.8187 

0.8076 

0.5862 

0.6703 

0.6565 

0.4712 

0.5488 

0.5327 

0.4057 

0.4493 

0.4365 

0.3278 

0.3679 

0.3530 

0.2615 

0.3012 

0.2853 

0.2059 

0.2466 

0.2313 

0.1760 

0.6394 

0.6250 

0.4555 õÖÌ 

   1 

0.8187 

0.8065 

0.6040 

0.6703 

0.6519 

0.5056 

0.5488 

0.5353 

0.3937 

0.4493 

0.4280 

0.3425 

0.3679 

0.3467 

0.2726 

0.3012 

0.2852 

0.2319 

0.5313 

0.5207 

0.4020 õÖø 

    1 

0.8187 

0.8032 

0.5931 

0.6703 

0.6533 

0.4790 

0.5488 

0.5254 

0.3980 

0.4493 

0.4259 

0.3258 

0.3679 

0.3523 

0.2669 

0.4384 

0.4350 

0.3160 õÖù 

     1 

0.8187 

0.8080 

0.5987 

0.6703 

0.6465 

0.4896 

0.5488 

0.5204 

0.3889 

0.4493 

0.4284 

0.3270 

0.3607 

0.3487 

0.2820 õÖú 

      1 

0.8187 

0.7995 

0.5986 

0.6703 

0.6421 

0.4886 

0.5488 

0.5262 

0.4084 

0.2962 

0.2873 

0.2214 õÖû 

       1 

0.8187 

0.8029 

0.5953 

0.6703 

0.6550 

0.4896 

0.2431 

0.2362 

0.1759 õÖü 

        1 

0.8187 

0.8085 

0.6067 

0.1994 

0.1879 

0.1371 õÌj 

         1 

0.1635 

0.1538 

0.1158 õÌ  ö           1 
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Table 6: Simulated wind power correlation; forecasts (top) and realizations (bottom) 

 … õÖ  õÖ) õÖÖ õÖÌ õÖø õÖù õÖú õÖû õÖü õÌj õÌ … 

ö õÖ  
1 

0.7863 

0.5707 
 

0.6297 

0.4508 
 

0.4980 

0.3835 
 

0.4013 

0.2996 
 

0.3340 

0.2556 
 

0.2785 

0.2003 
 

0.2186 

0.1566 
 

0.1807 

0.1378 
 

0.1576 

0.0999 
 

0.7852 

0.5800 
 õÖ) 

 1 
0.7835 

0.5476 
 

0.6189 

0.4572 
 

0.4958 

0.3484 
 

0.4120 

0.2900 
 

0.3430 

0.2431 
 

0.2674 

0.1978 
 

0.2271 

0.1691 
 

0.1925 

0.1384 
 

0.7171 

0.5094 
 õÖÖ 

  1 
0.7834 

0.5731 
 

0.6198 

0.4454 
 

0.5045 

0.3751 
 

0.4161 

0.3052 
 

0.3321 

0.2294 
 

0.2784 

0.2056 
 

0.2334 

0.1737 
 

0.5993 

0.4342 
 õÖÌ 

   1 
0.7758 

0.5742 
 

0.6272 

0.4767 
 

0.5087 

0.3735 
 

0.4063 

0.3045 
 

0.3358 

0.2584 
 

0.2722 

0.2145 
 

0.4849 

0.3759 
 õÖø 

    1 
0.7849 

0.5671 
 

0.6238 

0.4510 
 

0.5013 

0.3681 
 

0.4151 

0.3065 
 

0.3361 

0.2496 
 

0.3992 

0.3009 
 õÖù 

     1 
0.7869 

0.5666 
 

0.6339 

0.4625 
 

0.5152 

0.3760 
 

0.4204 

0.3101 
 

0.3340 

0.2720 
 õÖú 

      1 
0.7884 

0.5734 
 

0.6319 

0.4653 
 

0.5117 

0.3938 
 

0.2793 

0.2219 
 õÖû 

       1 
0.7871 

0.5758 
 

0.6257 

0.4616 
 

0.2218 

0.1593 
 õÖü 

        1 
0.7840 

0.5823 
 

0.1771 

0.1393 
 õÌj 

         1 
0.1507 

0.1099 
 õÌ  ö           1 
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The top entry in each cell in table 5 shows the target correlation matrix : for (randomly 

depicted) locations 31 to 41. For instance, looking at the first row we see how the correlation 

dies slowly as we go from left to right (or west to east with regard to the study region õ). The 

correlation of locations 31 and 41 is high again since they are located on top of each other 

in õ. The second entry in each cell of the table is the correlation we get by imposing rank 

correlation on wind speed forecasts. The difference between the target and the simulated 

correlations of forecasts shows that the IC method provides a practical approximation for the 

desired spatial correlation. The third entry in each cell is the correlation between the marginal 

pdfs of local wind speed. This correlation is lower than the correlation of the forecast because 

we impose the spatial correlation on the forecasts. As explained earlier, this is realistic 

because forecasting systems make predictions that are drawn from the forecasting of regional 

scale events.  

In table 6 we depict the results for wind power spatial correlations. The relation between the 

correlations of wind power forecast and wind power realization is similar to the 

corresponding relation between the correlations of wind speed. However, due to the non-

linearity of the conversion rate of the power curve the spatial correlations of wind power 

forecasts and realizations are lower than these of wind speed respectively. 

Finally, we look at the conditional distribution of aggregate regional wind power output. This 

distribution depends on the spatial smoothing effect in the region. Since wind statistics and 

other characteristics of a particular region are specifications which may vary greatly, we 

employ a broader approach in our analysis. The illustrations include the particular spatial 

correlation assumed so far in the experiment (figure 22) and two boundary cases. One is a 
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fully diversified wind case which refers to a zero correlation of wind power in any level of 

output. It may describe a region which is sufficiently large to accommodate wind power 

capacity so it is not influenced by spatial correlation. The second is an undiversified wind 

case. This is parallel to scaling up the capacity of a single wind farm since in this case the 

region does not offer any spatial smoothing effects. 

While most likely no real-world region complies with either of the two boundary cases, 

observing the range of results spanned by these two is practical. It provides an indication of 

the importance of diversifying wind power production and demonstrates the impacts of 

spatial correlation that can provide insights into particular regions. 

Geographical diversification of wind power may reduce the productivity of wind turbines if 

less windy areas are developed. In our simulations we do not account for a potential decrease 

in a capacity factor due to wind diversification. Doing so, we are able to observe all possible 

outcomes with no prior restrictions. More applied work ought to take this factor into 

consideration but we do not impose it. In this sense the fully diversified wind case represent 

the most efficient expansion path possible for regional wind capacity. 

We assume a single 1.5 MW wind turbine in every location, thus the rated regional wind 

capacity in our illustration is 150 MW. The marginal pdf of wind power forecast is depicted 

in figure 23. Looking at the illustrated distributions it is clear that spatial correlation has a 

significant impact on the statistical properties of aggregate regional wind power. In the case 

that wind is uncorrelated the forecast is normally distributed. For the particular correlation 

imposed in the experiment (figure 22) we see that a smoothing effect takes place but not to 

the extent that the marginal distribution becomes Gaussian. Particularly, the variance of the 
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forecast is much higher than the previous case. Finally, if the region does not offer any 

smoothing effects the distribution of the forecast is very uneven. To be precise, the likelihood 

of getting values that are not from the tails of the distribution is relatively small. Because 

wind is fully correlated, the distribution in this case reflects the relatively high probabilities 

of local wind speed being below the cut in point or above the turbine’s rated speed. 

Looking at the conditional distribution of wind power we get an interesting result. In figure 

24 we depict selected conditional pdfs to exemplify low, intermediate and high wind power 

forecasts (recall that we generate 5,000 conditional pdfs in the experiment). While all three 

distributions are Gaussian-like, it seems that using the wind power value implied by the 

forecasted values of wind speed introduces bias in wind power forecasting. This is especially 

true in the cases of low and high forecasted values. A forecast in the case of wind speed 

between the extremes is more dependable since the transformation of speed to power is less 

likely to be truncated by the power curve at this range. When we integrate over all forecats 

we find that transforming expected wind speed to wind power generates a relatively small 

prediction bias (the average error in the experiment is about 3 MW, which is less than 2.5% 

of installed capacity). This result is due the fact that wind power output is truncated from 

both sides. 
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Figure 23: Marginal pdfs of wind power forecast; no correlation (left), some correlation (center) and 
full correlation (right) 

 

Power implied by forecasted wind 

speed  ≈ 25 MW  

Power implied by forecasted wind 

speed  ≈ 45 MW  

Power implied by forecasted 

wind speed  ≈ 120 MW  

Figure 24: Conditional pdf of wind power, imposing some correlation; low (left), intermediate 
(center) and high wind power forecasts (right) 
 

 

Chapter summary 

In this chapter, we develop a numerical methodology to simulate the uncertainty regarding 

future wind power availability at the time of trading short-term electricity forwards. The 

methodology is relatively simple and independent of any specifications of wind speed 

conditions, spatial correlation, wind energy conversion, and wind power penetration rate. 
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Thus, it can accommodate a large array of assumptions regarding the paths for wind power 

expansion. The IC method, which is commonly applied to construct rank correlation among 

random variables, is used in this study for the purpose of inducing spatial correlation. Since 

geographical regions are very different and no concrete wind speed data is available to us at 

this time, the method is exemplified avoiding any subjective assumptions.  

The conditional distribution of wind power derived from wind speed forecasts at one location 

has no identifiable form. Moreover, the technical nature of the power curve makes it 

necessary to examine every wind speed forecast individually because some wind speed 

forecasts are associated with higher wind power variability than others. In periods of very 

low wind speeds it is almost certain that the turbines will generate zero output. Forecasts that 

are higher than the turbine’s rated speed but not too close to the cut-off point are very likely 

to generate the rated power. Other values of wind speed forecasts generate peculiar 

conditional distributions of wind power as well. This result is consequential; it means that in 

some trading periods traders face more uncertainties than in others. We show that spatial 

correlation is a main factor determining the uncertainty in aggregate wind power forecasting. 

The distribution of aggregate output may be U-shaped in the case of no smoothing effects, 

normal in the case of highly correlated wind or with no conforming shape in the case of some 

degree of spatial correlation. Therefore, the particular densities of aggregate wind power 

created by a short-term wind forecasting must be accounted for in modeling electricity 

markets with wind power capacity. The numerical work developed in this chapter, coupled 

with the theoretical economic framework introduced earlier, complete the required state of 

knowledge to model wind-integrated electricity markets.   
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Chapter 6: Modeling equilibrium in wind-integrated electricity markets 

 

Introduction 

The theoretical framework and the numerical methodology developed in previous chapters 

enable the analysis of various scenarios of wind power integration. In this chapter we 

generate and discuss results which are based on a particular set of assumptions. The 

assumptions regarding the structure of the electric industry and load are the ones we used 

earlier for the illustration of the base model in chapter 2. Assumptions regarding the features 

of the study region, wind speed statistics, wind power technology and forecasting quality are 

drawn from the related literature, recent technical reports and the analysis of wind speed data 

in Iowa. 

Since the specifics of electricity markets in different regions vary greatly, the results 

presented in this chapter should not be seen as a general guideline but rather an example of 

how to go about modeling equilibrium outcomes in the new economic environment of wind-

integrated electricity markets. A more applied work should use this theoretical framework 

while employing the characteristics of a particular region in question. For instance, assuming 

a particular industry structure refines the modeling of market power in the associated region. 

Second, the cost parameters of generating power in the model can be calibrated to fit a 

particular regional supply curve. Third, for concrete predictions it will be required to evaluate 

empirically and employ the specifics of wind resources as well the precision of the central 
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forecasting system in the region in question. While the theoretical framework developed here 

is flexible to accommodate various applied questions regarding wind power integration, we 

focus in our simulations on two key questions. The first is the impact that ownership of wind 

power capacity has on market equilibrium. The second is what role wind power 

diversification plays on equilibrium prices. 

 

Simulation setup 

Overall load 

The integration of wind power is our main interest therefore we fix the forecasted value of 

overall load across all simulations. This allows us to control for variations in the predictions 

of the model caused by the variations of overall load. The conditional pdf of overall load 

employed in the experiment is h|h�~8	10,000, 500)� i.e. the expected load for the modeled 

delivery period is 10,000 MW with standard deviation of 5%. This amounts to a mean 

absolute error (MAE) of 4% of total power when forecasting overall load at the day-ahead 

market. 

Industry structure 

There are five IPP firms and five LSE firms in the study region, i.e. g � 8 � 5. 

Production costs 

The cost parameters of generating power are �� � 1 and �x � 2. It is useful to compute the 

cost of generating power in our experiment before wind power is introduced. In particular, 
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we look at the marginal cost in the event that load is fully hedged by forwards contracts. This 

is relevant because it stands for the most efficient production scheme of one hour power 

supply in the simulated economy. Employing the cost function and symmetry, the expected 

marginal cost is 20 $/MWh and total short-run generation costs of each IPP is $40,000.  

Wind power 

A careful modeling of the expansion of wind power capacity demands that the probability 

distribution function of aggregate wind power output in the experiment would not 

overestimate the potential of wind power in the study region. As penetration rate increases it 

is only expected that less windy areas would be developed. For that reason we choose a 

location in center Iowa to generate a representative wind speed pdf for our study region. It is 

shown in chapter 3 that wind power resources in Iowa increases as one goes North-West 

therefore the fitted pdf of wind speed in center Iowa is a sensible choice for modeling wind 

power potential. More specifically, we estimate wind speed pdf at Zearing, where a large 

wind farm has been constructed in portions of Story and Hardin Counties in Iowa. When 

fully developed, this wind farm is planned to have the potential of generating 150 MWh32. 

Making use of data published by Iowa Energy Center we estimate the annual hourly pdf of 

wind speed at hub height of 80 m at Zearing as â~ÛF.	8.28, 2.41�. The mean and the 

standard deviation of this pdf is 7.34 and 3.25 m/s respectively (depicted in figure 25). 

In order to simulate the marginal pdf of wind speed in Zearing in our experiment we make 

use of the numerical methodology developed in chapter 5. Recall that in doing so we need to 
                                                           

32 At this time, bilateral contracts are signed to deliver 30 MWh to the city of Ames and 6 MWh to Iowa State 
University. The purchase represents roughly 15% and 10% shares of overall electricity consumption 
respectively. 
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parameterize the conditional pdf of wind speed â|âã~8eâã, �	âã�f and to solve for the 

parameters of the marginal pdf of wind speed forecast, which in turn generates the desired 

marginal pdf of wind speed.  

To construct the conditional pdf of wind speed we need to look at the precision of modern 

wind forecasting systems. Nowadays, wind power forecasting models are able to provide 

unbiased forecasts (Madsen, et al. 2004). On the other hand, MAE at one wind site location 

for a prediction horizon of day-ahead is still substantial. For instance, for wind farms 

participating in California ISO’s central forecasting system33 MAE is 17.5% of installed 

capacity (Blatchford and Zack 2004). MAE in different locations in Europe is about 13% of 

installed capacity (Madsen, et al. 2004). The most recent report available at this time 

indicates 10%-12% MAE of installed capacity for a single site (Smith 2008). Considering the 

particularities employed in these studies, e.g. wind farms technology, geographical 

characteristics of wind and more the results do not diverge dramatically. 

Taking these figures into consideration, we set â|âã~8	âã, 0.05âã )� and generate the 

marginal pdf of local wind speed by a particular marginal pdf of wind speed forecasts, which 

is âã~ÛF.	8.24, 2.93�. Recall that by employing the Iman-Conover method we are able to 

impose any degree of spatial correlation while preserving the exact marginal pdf of wind 

speed forecast across all simulations. Therefore, we are able to draw sample of wind speed 

forecasts only once and use the very same one in all simulations. That way, we avoid the 

intrinsic variation related to the sampling of wind speed forecasts. 

                                                           

33 The central forecasting system Participating Intermittent Resources Program (PIRP) was created by 
California ISO in 2003. 
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The chosen wind turbine in the experiment is similar to the 1.5 MW turbines installed in the 

wind farm in Zearing. The particular power curve of the employed machine is portrayed in 

figure 25. Finally, wind turbine output in the experiment are discounted by a loss factor of 

12%, which is the figure proposed by the Iowa Energy Center (see chapter 3 for details). 

Taking the particular wind conditions and the loss factor into consideration, the capacity 

factor of the illustrated turbine in the experiment is 36.74%. The computed MAE at the day-

ahead for a single wind site in our simulations is 14%. 

Study region and spatial correlation 

We simulate a square lattice which is similar to the one exemplified in chapter 5: a grid of 10 

by 10 wind site locations with side length of 100 km each to form a region study of 1,000 

km². Spatial correlation is assumed to be stationary and modeled as an exponential function 

of the Euclidian distance between locations (see eq. 5.11). We simulate three cases of wind 

spatial correlation: no correlation, some degree of positive correlation and full correlation. 

This is accomplished by setting the value of the parameter E (the characteristic distance) 

appropriately and imposing rank correlation accordingly.  

Regional wind power capacity and wind power penetration rate 

Rated wind capacity specifies the upper bound for the hourly output of wind energy in the 

study region. The expansion of wind power capacity is performed in the experiment by a 

symmetric increase in the number of wind turbines in each location. In particular, we focused 

on the following figures: 5, 10, and 20 turbines in each location which correspond to 

simulating wind capacity that account for 7.5%, 15%, and 30% of the expected load. We 
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illustrate and discuss in details only the results for the case of 30% since our key findings can 

be observed when simulating wind capacity at this scale.  

Wind power penetration rate is defined here as the share of forecasted wind power of the 

expected load in a particular delivery period. Notice that the actual share may be higher than 

the rated capacity if realized load is lower than expected. If realized load is higher than 

expected, wind penetration rate is always lower than the rated capacity. 

General 

In line with the empirical studies discussed in chapter 3, we assume that the hourly 

distributions of wind power and load are uncorrelated. All the numerical results consist of 

500 draws of 100 local wind speed forecasts (i.e. 500 delivery periods). Conditional pdfs of 

load and local wind speed for each delivery period consist of 500 draws as well. 
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Figure 25: Fitted annual hourly wind speed pdf in Zearing, IA and the power curve of a 1.5 MW 
turbine employed in the experiment 
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Results 

The following are the results of a computational experiment that examine the market 

equilibrium which arises from modeling regional rated wind power capacity of 3,000 MW 

(i.e. wind power capacity accounts for 30% of the expected load). Recall that for presentation 

purposes, we denote wind power capacity in the case that it is owned by IPPs as a Cournot 

capacity and in the case that wind is owned by competitive firms as a fringe capacity. 

The results by ownership of wind capacity and for the three cases of wind diversification are 

depicted in figure 26-28. It is shown that in all three cases of wind diversification fewer 

contracts are being traded if wind capacity is owned by IPPs. Looking at the illustration for 

the case of undiversified wind (figure 26, top), the two series reflect similar trend. The only 

difference is that the Cournot capacity case demonstrates a slight reduction in the equilibrium 

number of forwards before a sharp increase takes place. The increase happens at the region 

where net load approaches the volume of power hedged by forwards contracts. This is 

because the probability of starting up generators in real-time decreases fast in wind 

penetration rate in this region. For the fringe case, at about 19% wind penetration rate the 

number of forwards hit a saturation point. For the Cournot case this point is reached only at 

about 23% wind penetration rate. The saturation points are related to the fact that at these 

wind penetration rates the expected forward premiums are exhausted respectively (discussed 

further below). 

When we look at the case that wind experiences some spatial correlation (figure 26, center) 

the saturation point in the case of fringe capacity is reached at about 21% wind penetration 
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rate. On the other hand, for the Cournot capacity the number of forwards has not reached a 

saturation point in the experiment. Moreover, the increase in the number of forwards in this 

case is less obvious than in the case of the fringe capacity. Finally, if there is no spatial 

correlation there is a noticeable increase in the share of forwards for the fringe capacity case 

but for the Cournot capacity case there is no clear trend (figure 26, bottom). The fully 

diversified case enjoys smoothing effects hence is less likely to generate extreme realizations 

of regional wind power output. The 500 wind speed forecasts at 100 wind site locations in 

the experiment are translated into a relatively narrow range of 9.1% to 13.3% wind 

penetration rate. As a result, there is not much variability in the volume of trade in forwards 

contracts in both cases of ownership.  
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Figure 26: Forecasted wind power penetration rate and the share of forwards of expected load; full 
correlation (top) some correlation (middle) and zero correlation (bottom)  
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Figure 27: Forecasted wind power penetration rate and expected spot price; full correlation (top) 
some correlation (middle) and zero correlation (bottom)  
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Figure 28: Forecasted wind power penetration rate and expected forward premium; full correlation 
(top) some correlation (middle) and zero correlation (bottom) 
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The graphs in figures 27-28 depict the prices associated with the quantities presented in the 

graphs in figure 26 respectively. We plot forecasted wind penetration rate against expected 

spot price (figure 27) and against expected forward premium (figure 28). Starting with the 

spot price, the linear curves in the graphs are fitted to describe the relationship between the 

expected spot price and the expected wind penetration rate (denoted in the equations as 

wind). In periods that forecasted wind penetration rate is zero the expected spot price is 27.71 

$/MWh. The difference between this price and the marginal cost of 20 $/MWh computed 

earlier is explained by the fact that the higher figure corresponds to the actual forwards 

positions taken in equilibrium. 

The trend in the spot price caused by wind penetration rate is very similar across all three 

levels of wind diversification: first, the expected spot price decreases in wind penetration rate 

rapidly since the availability of wind energy reduces the marginal cost of generating power in 

the region. In our illustration, an increase of 1% in wind penetration rate causes a decrease of 

about 0.6 $/MWh in the expected spot price. Second, the expected spot price is higher in the 

case of Cournot capacity than in the case of the fringe capacity because the number of 

forwards traded is higher in the latter. The coefficients of the spot price equations imply that 

the price is more responsive to wind penetration rate in the case of fringe capacity. This 

means that the spot price decreases in the share of wind power faster if the owners of wind 

power capacity behaves competitively. In our example, integrating over all wind penetration 

rates the expected spot price is about 3% higher in the case of Cournot capacity compare to 

the case of fringe capacity. That is true for all three cases of wind diversification. 
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The role of spatial correlation can be examined by looking at the range spanned by the 

expected spot price in each case of wind diversification. While the average expected spot 

price is relatively comparable across all three cases, the coefficient of variation varies 

greatly; it is 0.02 for the case of fully diversified wind and 0.2 for the case of undiversified 

wind. Our result suggests that wind diversification is a significant factor in modeling the 

variance of the expected spot price in the day-ahead market. This is especially true 

considering the fact that we control for forecasted load and we use the same marginal pdf of 

local wind speed in all three cases of wind spatial correlation in our experiment. 

Premiums for electricity forward contracts are depicted in figure 28. The expected premium 

before the integration of wind power is 5.58% and diverge greatly afterwards. First, at 

relatively low wind penetration rates we observe a premium increase across all cases of 

ownership and wind diversification. Premiums for the Cournot capacity are larger than these 

under fringe capacity for all three levels of wind diversification. In particular, the maximum 

premiums for each ownership case are 8.6% and 7.1% respectively (figure 28, center). The 

difference in premiums becomes noticeable at about 10% wind penetration rate and exceeds 

a 5% gap at about 18.5% penetration rate for the cases of correlated wind. 

When the number of forwards traded becomes sufficiently high, the forward price converges 

to the expected spot price. This can be observed at the top graph in figure 28. When that 

happens the marginal forward contract provides no added value in expectations. On the other 

hand, in the case of fully diversified wind there is an interior solution for the number of 

forwards even when simulating 30% wind power capacity because high realizations of 

aggregate wind power are very unlikely (figure 28, bottom). For that reason, in this case IPPs 
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are more certain regarding the outcome of withholding capacity because high premiums are 

guaranteed with higher probability.  

Two main factors impact the change in electricity forward premiums due to an expansion of 

wind power capacity. These are the change in the probability of extreme realizations and the 

fact that IPPs compete for a smaller share of residual demand. First, the uncertainty regarding 

the availability of wind power preserves high prices because in the case of low wind 

additional generators would be turned on, driving spot price up. Second, the availability of 

wind power shifts production level downward, therefore at some point it becomes less 

profitable to withhold capacity.  

This increase in premiums takes place until wind power share is large enough to diminish 

IPPs ability to manipulate market prices. When this takes place more forwards are being 

traded (see figure 26) and the forward premium changes direction and starts declining (figure 

28). In the case of no spatial correlation the uncertainty introduced by wind is relatively small 

because aggregate wind forecasts are mapped into a small range of expected premium. On 

the other hand, for some degree of wind correlation the expected premium is sparse and 

depends on the aggregation of a particular set of local wind sites forecasting. 

 

Ownership of wind power capacity, generation costs and welfare distribution 

We seek to examine differences in outcomes for the case in which IPPs own wind power 

capacity and the case that wind capacity is owned by fringe firms. The two outcomes of 

interest are the costs of power generation and IPPs profits from non-wind power generation 
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units. We motivate the direct comparisons of equilibrium outcomes across cases on two 

grounds. First, the decision to invest in wind power capacity in the model is predetermined 

thereby seen as a sunk cost34. Also, the addition of ancillary services associated with the 

variability in wind power supply is administrated by the system operator and supplied by 

generators which do not take part in the markets for spot power. Therefore, investments and 

other costs related to the expansion of wind power capacity should not affect our comparison. 

Second, the demand for electricity in real-time is inelastic and does not respond to changes in 

prices. Therefore, the change in expenditure is the only parameter required for measuring 

changes in consumer surplus. Thus, we relate to the first outcome of interest as measuring 

how much the economy pays for generating power while the second stands for the changes in 

welfare distribution in electricity markets due to the integration of wind power capacity. 

For the cases that wind is correlated, the difference in the cost of generating power 

demonstrates a parabolic trend (figure 29, top and center). This trend also reflects how IPPs’ 

ability to exercise market power changes in wind penetration rate. IPPs’ market power 

initially rises due to the increase in LSEs’ financial risk and then decreases rapidly where 

generators compete for a smaller share to be produced by their conventional units. The 

average excess generation cost in the case of IPPs ownership of wind is 0.48% and 0.75% for 

the undiversified wind and for some degree of wind correlation, respectively. If wind is 

uncorrelated the range for forecasted wind penetration rate is between 11% and 14% and the 

                                                           

34 Recent global trend of setting mandates along with various government financial supports for renewable 
energy made wind power production viable. A model of investments should take into consideration the fact that 
wind power capacity expansion is paid partly by consumers. 
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average excess cost is 0.90% compare to the fringe capacity case. These seemingly minor 

deviations may be substantial when considering energy efficiency in a regional scale. 

Looking at IPPs’ profits from non-wind power generation units the differences between the 

two cases of wind power ownership may be remarkable (figure 30). The average difference 

in the expected profits is 18.58%, 18.08% and 16.88% for full correlation, some correlation 

and zero wind correlation, respectively. In addition, the volatility of the difference in profits 

is very high if wind is undiversified and relatively dense in the case of fully diversified wind. 

If wind is correlated it is more likely that available wind power will account for a larger 

portion of regional power supply. When this happens, IPPs profits in the case that they own 

wind power capacity may be 40% above the fringe capacity case. The reason for that is the 

following: at a relatively high penetration rate the forward premium approaches zero in the 

fringe capacity case while it is still high in the Cournot capacity case. In periods when the 

expected share of wind power is above 20%, the difference decreases in wind penetration 

rate due to the decrease in IPPs ability to exercise market power at this range.  

Lastly, we performed further simulations to examine the sensitivity of our results to the 

possibility that the cost of generating power is higher than assumed in our experiments. 

When we employ �x � 3 (instead of 2) in the simulations the results are scaled up otherwise, 

they do not change much (figures 31-32). In this experiment, the costs of electricity in the 

case of Cournot capacity are higher by 0.73% to 1.30%, subject to wind diversification 

compare to the fringe capacity case. The difference in IPPs profits is on average about 

18.23% to 22.42% higher in the Cournot capacity case, subject to wind diversification. For 

periods where forecast approaches 20% wind penetration rate, the IPPs profits in the case 
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that IPPs own wind capacity may be more than 60% higher than the case of a fringe capacity 

(figure 32, center). Similar to previous results, this gap decreases at higher forecasted wind 

penetration rate. 
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Figure 29: Ratio between total short-run generation costs in the Cournot capacity case and fringe 
capacity case; full correlation (top) some correlation (middle) and zero correlation (bottom) 
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Figure 30: Ratio between IPPs’ profits from non-wind power generation units in the Cournot capacity 
case and fringe capacity case; full correlation (top) some correlation (middle) and zero correlation 
(bottom)  
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Figure 31: Ratio between total short-run generation costs in the Cournot capacity case and fringe 
capacity case, αþ � 3; full correlation (top) some correlation (middle) and zero correlation (bottom) 
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Figure 32: Ratio between IPPs’ profits from non-wind power generation units in the Cournot capacity 
case and fringe capacity case, �x � 3; full correlation (top) some correlation (middle) and zero 
correlation (bottom)  
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Chapter summary 

Our simulations predict a large impact of wind power expansion on deregulated electricity 

markets. Our results depend on assumptions regarding ownership of wind power capacity 

and geographical diversification of wind power, but some model predictions are consistent 

through all scenarios. First, as wind penetration rate increases a substantial decrease in 

electricity spot price is expected. The parameters employed in our experiment imply that the 

decrease in the spot price due to wind power penetration rate is in the ratio of two to one (e.g. 

at 10% wind penetration rate we estimate about 20% decrease in the expected spot price). 

Notice however that this decrease is not translated into a net increase in consumer welfare. In 

fact, the expansion of wind power requires investments in wind capacity and additional 

ancillary service, which we do not model as we take the decision to expand wind power 

capacity as a predetermined policy in our short-run model. Second, we find that the forward 

premium increases in penetration rate due to the intermittent nature of wind power supply. 

However, when wind energy reaches a considerable share of regional power supply the 

forward premium starts to decline dramatically. This is because at some point net load is 

sufficiently small thus it is less profitable for IPPs to withhold capacity.  

When we examine the role of wind diversification we see that the smoothing effect in the 

region determines the range of possible realizations for the expected spot price, the number 

of forward contracts and the predictability of the forward premiums. Perhaps the most 

significant result with regard to wind spatial correlation is related to the notion that if wind is 

diversified (completely uncorrelated) it is with relatively low probability that aggregate wind 
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power supply meets its regional rated capacity. Consequently, production levels from 

conventional sources of energy almost never falls to the range where IPPs compete more 

aggressively in forward markets. Therefore, when wind power is diversified, the model 

predicts that IPPs profits from their non-wind power generators are higher than in the case of 

undiversified wind. Looking at the case where IPPs own wind power capacity these 

conclusions are even stronger. In this case it is in producers’ interest to withhold more 

conventional generation capacity compared to the case when they do not own wind power 

capacity. As a result, in this case less power is traded via forward contracts, expected spot 

price is higher and positive premiums sustain even when wind power accounts for more than 

20% of electricity consumption in expectations. Moreover, since with diversified wind it is 

almost for certain that wind power will never account for more than 15% of electricity 

consumption, the profits for IPPs in this case are substantially higher than the case that wind 

power in owned by competitive firms or if wind is spatially correlated. Our example shows 

excess profits for IPPs in the range of up to 40% when they own wind power capacity 

compare to the case that wind capacity is owned by competitive firms. In addition, we 

estimate expected losses of energy resources in the region in the range of 0.5%-0.9% (subject 

to wind diversification) if IPPs are the owners of wind power capacity. Finally, a sensitivity 

analysis show that if the cost of starting up generators is higher than assumed in our base 

case experiment the differences in IPPs profits and losses of energy resources between the 

two cases of ownership are even more substantial.  
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Chapter 7: General conclusions 

The overall objective of this dissertation is to develop a theoretical framework for analyzing 

deregulated electricity markets with wind energy. This is relevant since the state of 

knowledge for modeling electricity markets in insufficient for our purpose. While doing so, 

we are able to propose three main contributions. The first is the introduction of a novel 

equilibrium approach for modeling deregulated electricity markets. We develop a double-

sided auction model that explains for the first time, to the best of our knowledge, the 

coexistence of forward premiums and spot market mark-ups. That is a significant 

contribution since the two have been explained so far separately, by two conflicting modeling 

approaches. The body of literature explaining forward premiums is based on the assumptions 

of perfect competition and risk aversion. The main downside of this approach is that electric 

industries are concentrated by nature therefore it overlooks potential market failure caused by 

market power. In contrast, the expected outcome of taking an oligopoly modeling approach is 

spot market mark-ups. This is explained by producers’ incentive to withhold generation 

capacity. The drawback of this approach is the partial representation of the demand side in 

electricity markets, in particular, a lack of distinction between real-time load and the demand 

for forwards at the day-ahead market. Therefore, although this approach accounts for 

exercising market power it does not relate to the existence of forward premiums.  

The fact that both mark-ups and forward premiums are well documented in the empirical 

literature implies that the state of knowledge regarding modeling electricity markets is 
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incomplete. Our approach relies on two additional features describing the reality of 

deregulated electricity markets. First, the supply curve of electricity is dynamic due to 

ramping costs; frequent start-ups and shut-downs of generators increase the costs of 

generating power. Therefore, it is an important aspect of electricity pricing. Second, adequate 

regulation of the power system requires that scheduling power for future delivery relies on 

designated generators and their locations. This makes the market for short-term forwards 

illiquid since traders cannot make commitment to supply future power in the day-ahead 

market and secure the required amount only in the spot market. We show that by accounting 

for these fundamental elements of electricity markets our theoretical framework is capable of 

modeling oligopolistic competition, spot prices which are higher than the marginal costs of 

generating power and the existence of positive premiums in expectations. Moreover, we 

show that when we disregard ramping costs the predictions of our model coincide with the 

outcome that one would expect to see under perfect competition and the assumption of risk 

neutrality. 

Secondly, we expand the theoretical framework to account for the new economic 

environment of deregulated electricity markets with wind power. The integration of 

intermittent sources of energy introduces uncertainty from the supply side. This is an 

important addition to the model because it enables for the first time to integrate the 

characteristics of a renewable source of energy into an equilibrium modeling approach of 

electricity markets. In so doing, we also discuss the implications of a change in the industry 

structure due to the expansion of wind power capacity and geographical diversification of 
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wind power. The theoretical part of the study suggests that both issues may be fundamental 

for modeling wind-integrated markets. 

Our third contribution is related to the fact that wind power forecasting provides essential 

information for traders. The information of future availability of wind power is used to form 

expectations regarding spot market and risk management decisions. The ability to simulate 

this information is necessary for modeling traders’ behavior accurately in the day-ahead 

markets. We introduce a novel methodology that accounts for the joint distribution of wind 

speed and wind speed forecast for modeling the conditional distribution of regional wind 

power at the time of trading forwards. The simulation of regional wind power requires 

consideration of wind speed spatial correlation. Local wind speed raw data is described best 

by a Weibull distribution. However, so far researchers were using only approximations of the 

Weibull distribution in simulating the distribution of regional wind power. This is mainly 

because there is no a natural way to extend the case of a univariate Weibull to the 

multivariate case. For the purpose of imposing spatial correlation we make use of a technique 

introduced by Iman and Conover (1982). This technique is distribution free. Therefore it has 

a clear advantage for considerations of simulating regional wind speed. Our example in 

chapter 5 shows how to go about modeling the distribution of regional wind power supply 

starting with a fitted Weibull distribution to describe the distribution of local wind speed. 

The computational experiment in chapter 6 provides intuition regarding future expansion of 

wind power capacity. The outcomes in wind-integrated electricity markets depend to a great 

extent on the industry structure and the distribution of wind power output in the region. 

Relatively more concentrated electric industries are expected to generate higher profits for 
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IPPs as wind penetration rate increases. In the case that IPPs are also the owners of wind 

power capacity the integration of wind power would enhance their profits significantly 

compare to the case that wind capacity is owned by competitive firms. Also, we show that 

these excess profits are generated by inefficient employment of energy resources. In periods 

that wind penetration rate approaches the rated capacity IPPs are less likely to withhold 

capacity. This is true because in this case IPPs compete on a smaller residual demand. The 

main impact of wind diversification is the ability of wind energy, as an uncontrolled source 

of power, to reduce IPPs market power. Our results show that in the extreme case that wind 

power is fully correlated realizations of high wind power supply have relatively high 

probability. Under this circumstance, IPPs compete more aggressively because their ability to 

manipulate market prices is relatively low. If wind is less spatially correlated the likelihood 

of high wind penetration rate is lower therefore residual demand is relatively higher which in 

turn allows IPPs to exercise more market power.  

 

Future research 

A possible extension of the model would examine the impact of developing better batteries 

for energy storage. Making the storage of electricity economically viable will have two 

significant impacts. First, from regulation perspective the power system would be able to 

handle the variation of wind energy better therefore it would be possible to integrate more 

wind power capacity to the system. Second, storage would have a direct impact on electricity 

pricing. It is expected that the batteries would not be used in all times but only when the spot 

price is high enough to justify the cost of storage. In order for our model to account for this, 
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one would need to incorporate a truncated distribution for the spot price. This corresponds to 

the idea that expected spikes in demand can be met by power produced in base load periods 

when the cost of generating power is relatively low. With an upper bar on the spot price, 

demand for hedging risk via forward contracts is reduced. As a result, it is not just that the 

expected spot price of electricity is lower, but producers facing lower demand curve for 

forwards would have less incentive to withhold generation capacity. 

Another extension for our model may include investments decisions in wind power capacity. 

This would allow performing a full welfare analysis of the problem in hand. Our results make 

it obvious that there are large welfare implications for policy that support wind power 

capacity. Nowadays, wind energy enjoys considerable public support. The fact that global 

expansion of wind power is being subsidized by consumers makes this question most 

relevant. Our study shows that in addition to lowering electricity prices, wind power may 

help diminish market power. A complete welfare analysis may define the conditions under 

which public support is required to correct for a market failure and what are the 

circumstances in which subsidizing wind power becomes only a question of income 

redistribution. 

Lastly, the current design of electricity markets is based on the two-settlement process (i.e. 

day-ahead and spot markets). With considerable amount of wind power capacity it may be 

required to reconsider the time for trading forward contracts. Forecasting load at the day-

ahead market is relatively accurate, but it is still inefficient to forecast the availability of wind 

power for more than several hours ahead. Therefore, in markets that accommodate a large 

share of wind power it may be better to consider a new gate closure for trade in electricity 
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forwards. Our model can be used for this purpose as long as forecasting precisions of load 

and wind power at the proposed time of trading forwards are known. However, such an 

analysis should take into consideration the system constraints and the costs of scheduling 

conventional generators closer to the time of the delivery period. These should be added to 

the model as it is beyond the scope of our study. 

  



www.manaraa.com

172 

 

 

 

 

Appendix 

 

Appendix 1: Contract For Differences 

The stochastic nature of load gives rise to realizations where actual electricity demand is 

lower than the amount settled for delivery via forward contracts. In this case the excess 

amount cannot and will not be produced for physical and economical reasons. Physically, the 

excess amount causes transmission and reliability problems in the power system. These and 

the associated costs are not treated in this study. Economically, surplus of electricity cannot 

characterize equilibrium in electricity markets. Therefore, one would expect that a financial 

settlement which enables the buy-out of surplus be part of electricity market operation. Next, 

we show why a Contract for Differences (CFD) in particular may be an instrument to solve 

for the missing market problem and eliminate surplus of power supply. 

LSE’s willingness to resell excess forward contracts is obvious since electricity cannot be 

economically stored. For an IPP firm, we compare the economic payoff from generating the 

volume traded via forward contracts versus generating the exact realized load with 

accordance to a CFD settlement. Recall that in the event that load happens to be lower than 

the amount scheduled in advance the supply curve corresponds to the cost of a more efficient 

production regime. This curve is depicted in figure 33 by óc. The less efficient production 

regime of a higher load realization is depicted by the portion of the supply curve denoted 
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as ó^. Also in the figure, �Ã and � denote the amounts of power traded via forward contracts 

and a (lower) realized amount which a particular LSE responsible to deliver respectively. 

Generating the entire amount traded in advance, the IPP is paid the forward price 
c. In 

figure 33 we depicted 
c as the competitive price, assuming for now that there are no 

forward premiums in expectations (we relax that assumption later). Notice that regardless of 

the existence of a CFD, the illustrated realization provides the IPP with an extra producer 

surplus of 
cZ:
x (compare to the standard surplus created by the spot price 
x). If load is 

produced up to the entire volume traded via forward contracts, 
c coincides with the 

marginal cost and the area Z�: is added to the producer surplus. On the other hand, if the 

IPP can buy back the excess contracts for the (expected) spot market price35, the added 

producer surplus is the area ABCD L Z�:.  

For the case of positive forwards premium, simply increase 
c to show that for the same 

level of �Ã the producer surplus will be larger than in the case of zero premiums in 

expectations. In solving the model we showed that negative premiums in expectations are not 

possible in this market. Therefore, it is clear that both LSEs and IPPs benefit from trading a 

CFD. Thus we establish that a financial settlement such as a CFD is expected to be part of a 

market clearing condition. 

  

                                                           

35 Assuming that the spot price is a benchmark for trading excess supply is appropriate since in reality market 
participants balance quantities in the spot markets. 
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Figure 33: The two-settlement process in the case of over-trading 
forward contracts  
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Appendix 2: SOC for the IPPs problem 

The second derivative of ́  with respect to the number of forward contracts is 

�)´��c� ) � �)
c	·���c� ) �c� � 2 �
c	·���c� � ¦ �
x	·���c�
∑ l·��½�¾�,�±� Il��

j
r�eh¬h�f�h

� ¦ �� �xg � À�����c� � 1Á � �
x	·���c� � À�����c� � 1Á«
∑ l·��½�¾�,�±� Il��

� 
x	·� µ�)��
��c� )¸ � �� À�����c� Á) � ���� µ�)��

��c� )¸
� �x ¹À�����c� � 1Á) � e�� � �c� f µ�)��

��c� )¸º�r�eh¬h�f�h . 

(2.35)  

Notice that 

1) 
��?�	·��l�� � � 0 and  

��l�
�l�� � � 0,  

2) Ä �?�	·��l��
∑ l·��½�¾�,�±� Il��j r�eh¬h�f�h � 0, which is to say that in the event that no 

additional generators are turned on after the forwards market is cleared the spot price 

is not affected by the marginal forward contract. 

Therefore we can write 
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�)´��c� ) � 2 �
c	·���c�

� ¦ ¹À� �xg � �
x	·���c� Á � À�����c� � 1Á«
∑ l·��½�¾�,�±� Il��

� 	�� � �x� À�����c� Á) � �x À2 �����c� � 1ÁÂ r�eh¬h�f�h  . 
(2.36)  

 

Substitute for  
�?�	·��l�� � � J�|  , and 

�l��l�� � |� | � J�J�IJ� we get 

�)´��c� ) � 2 �
c	·���c�

� ¦ ¿2�x	��g � �x�g)	�� � �x� � ©g � 1g ª) � �x)�� � �x
«

∑ l·��½�¾�,�±� Il��

� �x	�xg � 2�x � ��g�g	�� � �x� Â r�eh¬h�f�h 

(2.37)  

 

� 2 �
c	·���c�

� ¦ 2�x	��g � �x� � �x)	g � 1�) � �xg	�xg � 2�x � ��g�g)	�� � �x�
«

∑ l·��½�¾�,�±� Il��

� r�eh¬h�f�h 

(2.38)  
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� 2 �
c	·���c � �x ¦ ��x � ��g	2 � g�g)	�� � �x� �
«

∑ l·��½�¾�,�±� Il��
r�eh¬h�f�h  . (2.39)  

Substituting for the derivative of the forward price 

�)´��c� ) � �2 �xg ©1 � 18ª ¦ r�eh¬h�f�h«
∑ l·��½�¾�,�±� Il��

� �x ¦ ¿�x � ��g	2 � g�g)	�� � �x� Â«
∑ l·��½�¾�,�±� Il��

r�eh¬h�f�h 

(2.40)  

 

� �x ¦ §�2g	�� � �x� �1 � 18� � �x � ��g	2 � g�g)	�� � �x� ¨«
∑ l·��½�¾�,�±� Il��

r�eh¬h�f�h (2.41)  

 

� �x ¦ §�2g�x �1 � 18 � 12g� � 2g��8 � ��g)
g)	�� � �x� ¨«

∑ l·��½�¾�,�±� Il��
r�eh¬h�f�h (2.42)  

 

� ��x ¦ �2�x	8	2g � 1� � 2g� � g��	2 � g8�g)8	�� � �x� �
«

∑ l·��½�¾�,�±� Il��
r�eh¬h�f�h (2.43)  

 

which is negative for any positive integers of 8 and g. Therefore, ́  is strictly concave 

in �c� , thus we know that if there is an interior symmetric solution it has to be unique.  
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Appendix 3: Wind turbine used in this study 

The power curve of a wind turbine used throughout this study is modeled in attempt to mimic 

the characteristics of a particular commercial 1.5 MW wind turbine. 

Table 7: Wind turbine technical data 

Rated power (RP) 1,500 kW 

Cut-in wind speed 3.5 m/s 

Rated wind speed 14 m/s 

Cut-out wind speed 25 m/s 

Rotor diameter 77 m 

Hub height 80 m 

 

The turbine’s output is expressed as  

 
=	+�� � � 0 .r 3.5 w +�Ø	+�� Ã t
 .r 25 w +� L 3.50 .r +� L 25 z (3.13) 

where the function describing the efficiency coefficient is  

 Ø	+�� � �Φ�	+�� .r 14 w +� L 3.51 .r 25 w +� L 140 F��F z (3.14) 

and Φ�	+�� is a normal cumulative density function (cdf) to be fitted by eye to the power 

curve of the desired wind turbine.  
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In figure 19 we depict a power curve generated by using a normal cdf with mean 7.9 and 

variance 2.2. This fitted power curve is depicted in chapter 3 and also being used for 

numerical purposes in the rest of this study. 
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Figure 34: Fitted power curve of a 1.5MW wind turbine to be used in this study 
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