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Abstract

Estimates from the World Wind Energy Association assert wwatd total wind power
installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover,
according to their predictions, by the end of 2010 global wind powecitapéll reach 190
GW. Since electricity is a unique commodity, this remarkableaesion brings forward
several key economic questions regarding the integration offisat amount of wind

power capacity into deregulated electricity markets.

The overall dissertation objective is to develop a comprehensivestivab framework that
enables the modeling of the performance and outcome of wind-integtatédcity markets.
This is relevant because the state of knowledge of modeliogieity markets is insufficient
for the purpose of wind power considerations. First, there is a neddctde about a
consistent representation of deregulated electricity marketpri§ingly, the related body of
literature does not agree on the very economic basics of modigotgoity markets. That is
important since we need to capture the fundamentals of electnatkets before we
introduce wind power to our study. For example, the structure oéldutric industry is a
key. If market power is present, the integration of wind power hge leonsequences on
welfare distribution. Since wind power uncertainty changes tinardics of information it
also impacts the ability to manipulate market prices. Thisdause the quantity supplied by
wind energy is not a decision variable. Second, the intermittetilspature of wind over a

geographical region is important because the market value ofpeimdr capacity is derived

www.manaraa.com



xiii

from its statistical properties. Once integrated into the atatke distribution of wind will
impact the price of electricity produced from conventional sowtesergy. Third, although
wind power forecasting has improved in recent years, at the dimeading short-term
electricity forwards, forecasting precision is still low. Tdfere, it is crucial that the

uncertainty in forecasting wind power is considered when modeling trading behavior

Our theoretical framework is based on finding a symmetric CotNash equilibrium in
double-sided auctions in both forwards and spot electricity markets. tAdwretical
framework allows for the first time, to the best of our knogkda model of electricity
markets that explain two main empirical findings; the existefc®rwards premium and
spot market mark-ups. That is a significant contribution sincerdorfaard premiums have
been explained exclusively by the assumption of risk-aversavimehwhile spot mark-ups

are the outcome of the body of literature assuming oligopolistic conopetiti

In the next step, we extend the theoretical framework to accouuefegulated electricity
markets with wind power. Modeling a wind-integrated electricity markatva us to analyze
market outcomes with respect to three main factors; the intiodumft uncertainty from the
supply side, ownership of wind power capacity and the geographicalificagien of wind

power capacity.

For the purpose of modeling trade in electricity forwards one shouldate the information
agents have regarding future availability of aggregate wind poWes is particularly
important for modeling accurately traders’ ability to predine spot price distribution. We
develop a novel numerical methodology for the simulation of the condititistalbution of

regional wind power at the time of trading short-term electricity foaa
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Finally, we put the theoretical framework and the numericgthodology developed in this
study to work by providing a detailed computational experiment examéteatyicity market

outcomes for a particular expansion path of wind power capacity.
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Chapter 1: Introduction and literature review

Problem statement

Wind power has been recently established as a major source oalda@mergy. The rapid
increase in wind power generation worldwide introduces two centralengaek to the
electric industry. One is the physical aspect of connectlagga amount of intermittent new
power capacity to the grid. The other is how to incorporate tradenid power and how it
will affect the price of electricity from other energy soes in a deregulated market.
Technically, transmission system planners seem to be abtleritify and to take steps to
relieve bottlenecks to integration of wind power such that systeliability is not
compromised. In contrast, the impact of wind power on electricitskehalynamics and
welfare distribution has not yet been studied comprehensively. ér hettierstanding of the
new economic environment of wind-integrated electricity marketessential for future

energy policy designs.

Public good aspects such as reducing dependency on fossil fuel andoredurcgireenhouse
gas emissions are often the grounds for governments to support renengighg Yet, when
the percentage of renewable energy and particularly thathof power increases, the impact
on electricity markets should be considered as well. Thereforendarmental question is
how market participants respond to an increasing supply of intermétemgy source. In

markets that make use of forward contracts as their primanipgtool, how does increased
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wind power penetration affect trading behavior? It is therafecessary to investigate how
the entire electricity market is affected, rather than flasteconomics of wind power, in
order to analyze the value of wind power to producers, consumers and tlegusubs

welfare effects.

At present, wholesale electricity markets make use of themamiprice auction mechanism
to administer trade in electricity. This mechanism promotesi&fty by encouraging power
producers and consumers to bid their marginal costs and marginaigmelss to pay
respectively. Wind power producers on the other hand, are not obliged to do smicalty
do not participate in these markets. Instead, wind power is utilhedever it is available in
real-time and wind power producers are compensated at thel settferm auction price.
This arrangement may perform well where wind power has # smaaket share, but for
higher penetration rates it may cause market distortions andtidesidrom efficient
allocation of energy resources. Moreover, wind power is uniquaibedéts marginal cost is
close to zero, thus its revenues are extremely sensitive tamdwwhen electricity is traded.
Therefore, investigating the performances of electricityketarin conjunction with the

expansion of wind power capacity is a key research question.

Liberalized electricity markets

For over a decade electric industries worldwide have transitimosda regulated to a more
liberalized structure. Under a monopoly regime, vertically irtegr companies control the
generation, transmission and distribution of electricity in a drgeographical area. A

regulator would guaranty the monopoly a fixed rate per unit oficgelin an attempt to
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deduce (and not overestimate) its average cost. For many Yeetrsciy generation and
distribution have been operated as natural monopolies due to econontateoHewever,
recent technological advances in power generation have weakendaklible that the

advantages of economies of scale outweigh the potential benefits of hzdzenaarket.

In a deregulated electricity market, a monopoly utility is regdaby several independent
entities, including independent power producers (IPPs), load servitigs(tSES) and a
system operator. IPPs are generation companies that produce larmbveer in the
deregulated electricity markets. LSEs are a typical buny#rose markets. These firms must
purchase electricity to meet real-time demand of their consurfike system operator’s role
is to accommodate the unique features of electricity. Two kelynieal peculiarities of
electricity make it a unique commodity. First, it cannot be stemxhomically. Thus any
unconsumed quantity is lost. Second, electricity requires a trasmiemsystem which means
that some degree of coordination and/or regulation by a systentapszads to be in place.
Examples include independent system operators (ISO) or regiansirission organizations
(RTO). In addition, electricity is an essential commodity. Thus, theeelarge welfare
losses from any failure in the market from inadequate supptieser systems need to
operate reliably at all times and timely investments in cpanust be made to meet
growing demand. The function of the system operator is a keyyinnarket structure
implementation. For that reason, deregulation in electric indggdtas been limited to power
generation and retailing. More about the challenges and expevrieriated to the transition

to liberalized market itself are discussed elsewhere (Griffin andrR24D5).

1|SOs and RTOs are independent and nonprofit ozgéions which have as their primary role managioger
transmissions, reliability and efficiency of thewsr system.
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Wholesale electricity markets

In a liberalized electricity sector a competitive wholesalarket is developed and operated
by the system operator or some other entity that does not ctlegpaiticipate in the market
for electricity. The main functions of electricity exchanges to accommodate trade and
balance real-time operations. Short term electricity tredeisually organized as two-
settlement processes: the day-ahead market and the reabtimpot markets. Market
participants submit their bids and market price is determineddingao the type of auction
system adopted by the market administrator. In the U.S. and necsticely exchanges a
uniform pricing auction is implemented in which the price of thegmal traded unit of
electricity determines the market price. This mechanistonsidered competitive as long as
the number of market participants is large enough to elimiteepossibility of market
power and strategic biddings. Under this circumstance the maricet mpresents an
efficient allocation of power generator resources. Unfortunatiely,is usually not the case.
The electric industry is often concentrated and the unique chasfics of electricity
commodity contribute to the ability of generators to exerciaeket power. This is mainly

due to an inelastic demand and the fact that electricity cannot be stonednécaly.

There are several other commodities that are traded in thgutkdesl electricity markets
including financial transmission rights, reserve capacity amidlany services. We discuss
these only briefly because they are not directly related taese@arch problem. Financial
transmission rights are traded to hedge the cost component afcalegrices which is

caused by congestion of transmission lines. The market fovegseapacity is where firms

www.manaraa.com



compete for investments in new power generation to accommodate fotwease in
demand. Ancillary services are traded as complementary coriesoth spot power. The
purpose of these services is to help maintain the security amgu#tiéy of the supply of
electricity in real-time. The main categories of ancillagyvices traded are frequency and
voltage control and backup and restoration capacity. Ancillary poweradre traded are
reserve power of different types, reactive power and backup polemarkets for ancillary
services often consist of auctions but are fundamentally differemt the spot market.
Ancillary services are provided by different generators than thasggcipating in the spot
market. Also, most of the time ancillary power is not geneydietdwhen it is, the cost of

input fuel is relatively high and efficiency level is extremely low.

The exchanges play a significant role in promoting the competitisasfethe market. As a
coordination device, the exchanges publish real-time market informateathev forecasts,
load forecasts and recently there is a growing trend to adopalceitd forecast systems as
well. These transparencies are crucial for efficient dmtimaking in all traded electricity

goods.

Modeling electricity prices

Models of how electricity is priced are used to value gelmerassets, financial transmission
rights, and the pricing of electricity derivatives. This sectaiscusses the different
approaches that have been used to model electricity prices andsreeigent quantitative

methods. Electricity prices have been modeled as either stochestesses or as arising

from the interaction of fundamental supply and demand curves. The neqseit approach
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used is to model electricity prices as a stochastic prodesthis approach historical price
data are used to infer the properties of future electricityeprithe second class of models
attempts to model fundamental attributes of electricity supplydemidand to infer future

price behavior. This class includes engineering and equilibrium based models.

Stochastic approach

Pure stochastic models include continuous-time diffusion models and telisore
autoregressive models. While both focus on modeling the movement of, (inoe series
models may also include some features of the market. Neithes ofiech insight into the
fundamental economic forces and market operation that affect.pBtmhastic models are
most valuable for pricing derivatives in electricity mark&tgere the stochastic properties of

prices are the main interest.

Diffusion models
A typical approach to modeling prices is to assume that they faBleametric Brownian

Motion process as follows:

d(P;) = uP.dt + oP;dB; (1.2)
where P, is the price of electricity at time, u is a drift rate,s is volatility andB; is a

standard Brownian motion process increment.

Taking the natural log d¥ guarantees non-negative prices and implies that pricegis lo

normally distributed if the movement in price is normally distriduteucia and Schwartz
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2002; Tseng and Barz 2002). The price movement is often formulaganasn reversion

processes by defining the drift parameter as:

u=m(m; — InP,) 1.2)
wherem is a mean reversion parameter, often referred as the degsteralbility of the
commodity under investigation. For a storable commodity, this pagawdt be small. But
it will be large in the case of electricity because elatyris quite costly to store. The
parameter m; captures the cyclical feature of seasonal fluctuations ¢(Dermt al. 2003).
Although very simple and convenient, these models fail to repkspakes in electricity spot
markets. The simplest way to overcome this weakness is to iner@jiemp component
within this framework (Clewlow and Strickland 2000; Knittel and Rtsb2005; Cartea and

Figueroa 2005). Then the model becomes

d(Pt) = m(mt - lnPt)Ptdt + O—PtdBt + Ptdqt (1.3)

wheregq; is a Poisson process.

The extended model generates price spikes but fails to mimiayhamics of their
occurrence successfully. The Poisson component introduces an isolatétdependent
jump. In reality, jumps in electricity prices behave diffengn®pikes tend to occur in a
cyclical manner and not as a purely random event with a probatfildgcurrence. Also, in
reality a sudden spike in electricity prices is often followgda rapid price decrease caused
by generators being turned on to meet the temporary shortagessEsupply often follows

immediately.
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The Markov regime switching model is an approach that replispikes in a more realistic
fashion (Elliott, Sick and Stein 2003; Huisman and Mahieu 2003). In this nupooel
movements are separated into ‘normal’ periods as in equation (1.1) kg iseriods

described by

While equation (1.1) characterizes the price movement in ‘norpeadods, equation (1.4)
employsg; as oppose tg; to describe the drift in ‘spiky’ periods. The switch in thiseces

governed by a standard 2 by 2 conditional probability matrix.

Other diffusion models were constructed specifically to accommdloiagearticular nature of
electricity. These are more mathematically involved and grzeyrdinary commodity
price modeling (e.g. Deng 2000, and Geman and Roncoroni 2006). Their raatiaém

description is superior and offer a better fit for electricity prideaber.

Time series models

Generalized Autoregressive Conditional Heteroskedastic (GARCldpelm are the
workhorse of discrete time models of electricity prices (Byst2005; Garcia, et al. 2005;
Goto and Karolyi 2004; Longstaff and Wang 2004; Mount, Ning and Cai 2006).l1d9secc

model is defined as

n m
Pt =C+Z®ipt—i+zl9j8t—j+st (15)
i=1 j=1

where
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(1.6)
and h, =1 + Y7L, 5j5t2—j + X Ve -
Imposing the required stationarity and non-negativity conditions gyanaedn reversion in
electricity prices. Volatility persistence is generatgdthe structure of the error temuy
current volatility is explained partially by past volatili%pplications of the model often

incorporate variables for seasonal effects, weekend/weekday andytsokdfacts, time of

the day effects, jumps in variance and variance clustering.

Fundamental approach

The fundamental approach for modeling electricity prices accéantse costs of supplying
electricity, the demand for electricity and the behavior of etst market participants.
While both engineers and economists use this approach, their purpogeraby the focus

and methodology is quite different.

Engineering based models

The engineering approach attempts to include all relevant fanceswer generation to
estimate the nominal cost of electricity production. Major inputa dadnsidered are
characteristics of technologies, input prices, physical and poeeurity constraints,
transmission system operation, congestion issues, and energ@ndleifhen, particular
figures are utilized in different scenarios to assign thepted cost of production for given

conditions. This approach refers mainly to the algorithm developedngpidmented by a
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system operator (i.e. ISO or RTO) but may also be employedtdolying the aggregate

industry profile (Huang and Wu 2008) or adoption of new technology (Bakos 2002).

Equilibrium price models

Equilibrium models examine the relationship among economic driversiiketnoperation to

describe market equilibrium and prices in particular. Behaviorasket participants such as
IPPs and LSEs are crucial for understanding the evolution of mar&es prere, the models
describe the main properties of the market instead of statngdiual engineering figures
explicitly. For instance, representing production cost as a convex fuieatoimcorporate the

fundamental cost structure faced by power generators. Assukhiitentical producers,

Bessembinder and Lemmon (2002) introduced the following cost function:

TC;=F+=(Qp),i=1..N (1.7)
whereF represents a fixed cosdp; is the volume produced by produderc is a constant
greater or equal to two and is a parameter. This simple representation implies treat t
industry is characterized by increasing marginal cost.réabstic because producers employ
different technologies types according @g; and the need to meet demand. Employing
economic theory and market data (to calibrate parameters) paviglansparent framework
for further economic analysis. An extension of the above cost funat@snproposed by
Suenaga and Williams (2005). They replaced the parameteith stochastic fuel prices
which enabled them to explore the input-output price relationships in pgevesrating.

Finding equilibrium electricity prices requires consideration of atein (Barlow 2002;
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Vehvilainen and Pyykkdnen 2005). In these models demand is charactevizgutclaastic
while supply is not. In Barlow (2002) prices are determined byntieeaction of consumers’
willingness to pay and an unspecified, fully responsive, supply sid¥elhvildinen and
Pyykkoénen (2005) demand is completely inelastic and prices aerdieéd by the marginal

production cost of the marginal generating unit.

A recent study explains the evolution of prices by defining both denrahdagpacity P and
C, respectively) as state variables (Cartea and Villaplana 200%&) chosen spot price

formula is

P, = Be¥‘*?P anda,p >0,y < 0. (1.8)
Imposing the signs of the parameters guarantees that price=ase with demand and
decrease with capacity. The state variables are composedi&t@mministic and stochastic

components:

Je=g’®+xlj=CD. (1.9)

The diffusion process is described as mean reverting and follows standardeBrowotion:

dyl = —kiyldt +oidz] . (1.10)
The model links demand and capacity with spot prices in a techwégahnd does not offer
any fundamental economic interpretation. The model assumes ttabthastic parts of the
state variables are independent which implies that traders despmind to price changes.
This assumption contradicts the basis of a competitive market iopedaSEs are contracted
to supply any realized demand. Thus they are not price responsivevetpWPs are able to

respond to market prices by making capacity adjustments. Forpexaim the long run
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investments are made to meet anticipated electricity demandhgrblae short run response
is characterized by frequent startups and shut downs of peaking f@aatcommodate load

spikes.

Modeling oligopoly equilibrium

Empirical studies examining the performances of dereguldéstrieity markets find high
price-cost margins, which suggest the presence of market gowese markets (e.g.
Borenstein and Bushnell 1999, Borenstein, Bushnell and Wolak 2002, Green 1999, Mansur
2008, Puller 2007 and Wolfram 1999). If power producers are able to exeraiket power,
models of oligopoly pricing should be employed instead of those assumifertlye
competitive behavior. Natural candidates for a non-cooperative gaariee Cournot and the
Bertrand models. In the former firms compete in quantities wthée latter describes
competition in prices. In the Bertrand equilibrium the firm thatqw its output below its
rival's will be the only supplier of the good in the market. Thisneaork is not suitable for
modeling electricity market since the supposition that a sifighe in a deregulated
electricity market can supply overall load is unlikely. In additi the cost function of
generating power is known to be convex thus negating the equilibriuractérézed by a

Bertrand model.

An IPP acting as a Cournot competitor chooses its own quantitygtéke quantities of its
rivals as given. In doing so, each IPP is aware of the ingdatd own production level on
the market price. Nash equilibrium in this game is reachedendiénPPs simultaneously

choose profit maximizing quantities. In the case of electrioitgrkets the outcome of
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applying a standard Cournot model usually tends to overestimaketnpower. First, the
Cournot is essentially a static short-run model which does not coresitlgr and exit of
firms. Yet, electricity markets are characterized by repeasteg at which in each hour spot
market is being cleared. Since supernormal profits encouragenting of new firms,
incumbents may not be able to exercise market power up to the Cagudibrium.
Secondly, the standard Cournot framework does not consider forward confrh is
limiting since forward contracts are the main pricing tool ecelcity markets. Moreover,
Allaz and Vila (1993) show that the presence of contracts in a Cosgtdhg drives
suppliers to act more competitively in the spot market and movg &aa the Cournot

equilibrium.

Supply Function Equilibrium (SFE) is another oligopolistic modeling amprahat is
frequently being used in studying electricity markets. Tikisa theoretical framework
developed by Klemperer and Meyer (1989) and employed for modelirntgatgenarket in
Green and Newbery (1992) and others. In this single settlement swgalers bid supply
curves rather than price-quantity pairs. Since most deregutaéekiets are governed by
uniform price auctions, the SFE setting describes actuabd&PBvior more closely than the
Cournot and other models. Unfortunately, the solution of a SFE approcuiraterized by
multiple equilibria. Interestingly, the range of solutions of SFEbasinded between the
Bertrand outcome from below (the competitive solution) and the statienot outcome
from above. The range of possible equilibrium may be narrowed dowmapacity
constraints, entry and market for contracts (Green 1999; Green arzkiyel992; Newbery

1998). Under extreme conditions the SFE model may produce unique eguililihis
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however is very limiting and almost impractical from an applied point of viEar example,
as pointed out by Newbery (1998) incorporating an SFE model to adoolbuth forward

and spot markets will generate double infinity number of equilibriail&i to the Cornout
model, this is a considerable downside since spot power is beind tratihe two-settlement

process (day-ahead and a spot market) in most deregulated electri&ysma

Another shortcoming of the oligopolistic modeling approach is the GHcla realistic
representation of consumers’ behavior. Both Cournot and SFE models eanpleyand
curve (usually linear) to represent real-time load. Doing so, fadyto describe the
optimization problem of LSEs. Since LSEs aggregate large numbeorsgfumers and
participate in forward markets, the evolution of demand in each of thaskets should be
accounted for as well. Kian, Cruz and Thomas (2005) proposed a model of sioleble-
auctions for spot power. They develop bidding strategies for IPPs dasl ihSa dynamic
system. Their study suggests that a double sided auction is e nealistic modeling
approach. That is because it accounts for the demand side resportbes stoategies
employed by the supply side. As a result, the outcome of the doubtkaidgon is more

efficient than a single sided auction.

An alternative approach to the oligopoly framework is to assumeatiatts have learning
capabilities. Sun and Tesfatsion (2007) developed a computational modearmine the
performance of a wholesale power market. The model is basedably wyers and strictly

sellers of power (i.e. LSEs and IPPs respectively) andtamsysperator. A dynamic 5-node

2 Sufficient conditions for uniqueness in SFE moakd symmetry, unbounded upper support of unceytaint
linear demand and marginal costs
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transmission grid is assumed for concrete illustration. Unlike cgbenomic models, by
incorporating the power system, Sun and Tesfatsion are able to loca@bnal marginal
prices. These prices reflect the least cost of meeting adaitmegawatt demand at a certain
node. Electricity trading is assumed to take place at theseitlement process of day-ahead
and real-time markets. However, the demand side is not studied irarf8uesfatsion
(2007). Instead, it is assumed that LSEs submit electricity niegmvaich is identical to load
forecasts thus no optimization from their side is considered. Tihe pPedict the state of
the power system to develop strategic biddings. Under this setumaitiel shows that if
power generators have learning capabilities they may egetwesr potential market power

and bid strategically. As a result they obtain higher profits.

Electricity derivatives

Uncertain demand, non-storability and a time sensitive cost seusftypower generation are
the main sources of the volatility in electricity spot marKéte exposure to sometimes-
extreme price volatility can be costly to both LSEs (buyars] IPPs (sellers). Various
financial and physical instruments for hedging price risk ictet@ty markets have been
developed and implemented. Among these, forwards and futures terrache simplest
and the most popular. Both contracts are an agreement to buy deceitiey at a specified

price for a particular delivery period. They differ howeverha tvay they are traded, their
volume, and in their specificity. Futures contracts are tradetth@norganized exchanges
while forwards are traded bilaterally over the counter. Futares highly standardized

contracts traded in low volume. Forward contracts are sold as Hiaitkeed to fit on/off
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peak load time of any future period at any predetermined locdtiothe U.S., electricity
futures contracts are traded currently only in the Minnesota GEaichange. Other
exchanges decided to delist them due to low interest. In Europeijocgieétitures contracts

are traded more frequently.

Typically, LSEs and IPPs manage a portfolio of electricityvdéives which are being traded
in different occasions prior to the delivery period in question amdrdmg to market
conditions and updated demand forecasts. Taking a forward position dedreas&posure
of buyers and sellers to spot market volatility. The nexi@ediscusses the role of futures
and forward contracts in electricity market risk managenmfewtetailed review of a variety

of electricity derivatives is given by Deng and Oren (2006).

Risk management

Electricity demand in wholesale electricity marketseigresented by LSEs. These firms are
contractually obligated to meet any volumetric demand of theircendumers’ at all times.
Coupled with spot price volatility this demand-fulfillment requiremnemakes them
extremely exposed to short run losses. Electricity is a nonbocammodity and as such
the convenient no-arbitrage approach cannot be applied for hedgingésigk in futures
markets. Instead, the distribution of electricity prices mainfegred, and then the prices of
futures contracts (and other electricity derivatives) candmepated to comply with a no-

arbitrage in expectations principle.

www.manaraa.com



17

Power producers would be interested in revenue certainty to akaayscash flow, enable
timely investments and preserve firm credit rating and rapatathese circumstances make
forwards and futures contracts essential devices to contkdioridoth LSEs and IPPs. The
demand for future contracts and the evolution of their prices haveshadiad extensively.
A conventional starting point for these studies is based on two keynpssns; one is
related to the behavior of agents in this market and the otladoig the stochastic linkage
between electricity prices and demand. First, the demand fagingednstruments is
motivated by Markowitz’s portfolio model in that buyers and selieant to diversify their
procurements/sales to achieve higher expected utility byngadif mean profits for
reductions in variance. Then, an assumption about the particular isinbution of price
and load follows, and is used to optimize a portfolio. For example, both Wwowiiz and
Karimov (2004), and Oum, Oren and Deng (2006) assume a concave LStvelfjertion
and derive an optimal frontier of futures holding. Employing carntisthsolute risk aversion
and mean-variance functions, the portfolios represent the optiradeoff between
procurement cost expectation and cost variance. Woo, Horowitz and Kaxeowplified an
efficient portfolio for the case that overall procurement cosassumed to be normally
distributed. Oum, Oren and Deng investigated cases which priceoadddemonstrate
bivariate normal or log-normal distributions. Mean-variance oljedtave been employed
to construct the corresponding efficient frontier for power produ(®ysrgan, Liu and
Lawarree 1999). Acknowledging that variance of profits penalieakzations of over and
under expected value at the same rate, Paravan, Sheble and Golob ¢R@O#)es power
portfolio optimization problem where the variance of profits is igaaby the conditional

value at risk. That is the expected value of loss given a a@alizof a certain outcome. A
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parallel approach for an LSE firm is presented in Woo, KarinmavHorowitz (2004) where

the objective is to minimize expected procurement cost subject to a cost expmssiraint.

By imposing exogenous price distributions, the studies above can be \@swedartial
equilibrium approach for risk. A general equilibrium modeling of elg@tgrmarket is rare
due to the intricate feature of this market. Bessembinder and deni@002) developed a
general equilibrium model where both quantity and price of forwardsdatermined
endogenously. This study is unique in its effort to describe the coityplExelectricity
market essentials based on classic economic theory. It is catsibebe a benchmark for
economic-based modeling under the assumption of perfectly competétecity markets.
Bessembinder and Lemmon assume that the settled price avfvard contract is based
mainly on the expectations of the spot market price. Storagdasknetlated to the nature of
the traded commaodity are generally determinants in forwards rmaa&ewell. In the case of
electricity, storage is economically irrelevant (excludiggrielectricity), but risk may play

an important role.
Start by assuming that both LSEs and IPPs decision makinges ba the following mean-

variance objective functions

v[E(m),Var(m)] = E(n) — gVar(n) (2.12)

wherer is profits and the parametdris the coefficient of absolute risk aversion. Note that
this representation is equivalent to assuming that utility is exp@heand profits are

normally distributed.

The non-hedged profits of a representative IPP and LSE respeectieely
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mpp = PQ — TC(Q) andm sy = Q(Pr — P) (1.12)
whereTC is the total cost defined in equation (1.7)andQ are the spot price and realized

demand respectivelyy is the predetermined fixed retail price per unit of electricity.

One can show that the optimal forward position for the meaa+vagiobjective function of
both LSE and IPP can be written as

P — E(P) Cov(ﬂ{IPP,LSE}'P )

F = 1.13
Qe Lse) AVar(P) Var(P) (1.13)

The first term is driven by the bias of the forward pAgecompare to the expected spot

price. The second term is the optimal condition for minimizing the variance ofsprofit

Solving the model, Bessembinder and Lemmon show that the equilibriwmmmeand the
forward price can be written as functions of the first, second and thoments of the
distribution of the spot price. Next, they establish the reékattin general the forward price
is a biased forecast of the spot price. The risk premium whicefised as the forward
contract price minus the expected spot price is increasiriggiskewness and decreasing in
the variance of spot price. That is, in peak load periods tlatlearacterized by high
expected demand and a high variance in demand, the risk premium Wwijfbelue to the
convex nature of generating cost. In lower demand periods, lowemekswpushes risk

premiums down.
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Another study provides an empirical analysis based on the thesenped above (Longstaff
and Wang 2004). Data from the PJIMlectricity market support the predictions of
Bessembinder and Lemmon and implies that an economic-based modagbaisiec of

explaining the formation of electricity markets prices.

Electricity from renewable resour ces

Diversification of energy sources and climate change mitigatiee haen the major grounds
for the growing interest in energy from renewable resourcegher energy prices coupled
with technological advances in harvesting renewable energy ethatiis interest.
Renewable energy resources include wind, solar, geothermal, kiohyasd, landfill gas,
and others. Many countries have introduced mandates for renewable eoelggtdnce, the
European Union set an overall binding target of 20% by 2020, though tren{agyre varies
greatly within union members. Australia set 20% by the year 282@edl. In the U.S.
Renewable Portfolio Standards (RPS) have been established atetbastd the District of
Columbia but no national policy has been set. Targets, percentagetmbtes, and the
energy resources to be used vary among states. Targets aifeecdpes percentages of
overall power generation capacity or as annual energy volumes poBdaoother support
for renewable energy is given in a form of a tax credit anéwable energy certificates,

which are granted for generating energy from qualified renenasburces. They are traded

® PJM Interconnection is a regional transmissioranizption (RTO) in the U.S. that coordinates thevemoent
of wholesale electricity in all or parts of 13 stmtind the District of Columbia.

* Hydroelectric power produced in a pumped-storagéify is usually considered as a non-renewakdeuece
as pumping requires energy that comes mainly frassiff fuel generators.

® U.S. state level RPS can be accessed at the Aanafind Energy Association website at:
http://www.awea.org/legislative/pdf/State%20RP S%265heet%20Nov%202007.pdf
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separately from electricity and can provide a supplementaryesofimmcome to producers of

renewable energy.

I ntegrating wind power

Integrating renewable energy into the wholesale electriciiyket is a challenging task.
Unlike conventional power units, renewable energy can fluctuate ioverbtecause output
depends on precipitation, radiant energy and air flows which are aimcbyt nature. Their
variable nature means that renewable energy cannot be marketied same way that
conventional power is marketed. We focus here on wind power agiabily makes it the

most difficult energy resource to integrate into the power sygtRC 2007). In addition,

U.S. wind power capacity has been rapidly growing as shown in figure 1.
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Figure 1: U.S. overall wind power capacity
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The large increase in wind power shown in figure 1 suggests twdt ie useful to better
understand how wind power will impact the power generation industrg. engineering
implications of grid connection and reliable transmission of wind p@se being studied,
discussed and improved on an ongoing basis (Jauch, et al. 2005; Sdéaler2@6). In
particular, both short run and long run reserve requirements néedrésevaluated because
an increasing share of wind power makes quantification of sysieenves more complex.
Short run reserves are used to account for real-time load fongcasrors and generator
outages. Long run reserve refers to the adequacy of overall payacity of a region to
meet demarfd When the share of wind power is small, the overall amount ofbititsiahat

is added to a power system is small. Hence both types ofveeseguirements are not
significantly altered. When wind has a 10% share, the increaslort term reserve is
estimated in the range of 2-8% of total installed wind power aiigpg@Holttinen and
Hirvonen 2005). In terms of overall installed capacity, the capacédit for wind in low
penetration rates is equivalent to that of conventional power units routishes at higher
rates. The reason for this is that in low penetration rdtesvariability of wind power
production is within the range that short run reserves can handle whtiningr adjustments.
As wind power share increases, the ability of these res&vascount for possible sudden
drops of wind power is reduced thus long run reserves have to bd.dddreover, at a
certain point, capacity credit does not increase with the additioroad wind turbines to the

region.

® Capacity calculation of wind power for planningeeve varies greatly. In some regions a fixed priiqo of
15% -20% of turbine’s rated power is used. Whenliegiple, historical data is utilized to compute énagal
capacity factor based on performances. In otheiomsgthe capacity evaluation is based only on deaH
periods.
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A study by Doherty and O'Malley (2005) introduce a novel methodotopate reserve

requirements for high shares of wind power capacity regimesilit shows that long term
capacity adjustments are more substantial relative to thetehmrrequirements. Short term
reserve requirements are increasing, but they are fawlypérause intra hour wind variation
is small relative to overall load variation. However, categooifereserve that act over longer

periods of time have to expand with the introduction of more wind power.

Wind forecasting

Wind power value is strongly influenced by the precision of winddpe®casting. A high
guality forecast enables a system operator to schedule winer powdisplace conventional
generators and minimize ancillary services costs. Witarcetp the operation of electricity
markets, accurate information about wind power availability promeffesency in trade.
Unfortunately, small wind speed prediction errors are translatedlanje ones when it
comes to wind power predictions, as will be explained in detaihapter three. Thus, wind
energy prediction is not a simple task and still produces rdiatimaccurate predictions

when predictions are made for more than several hours ahead.

Wind speed predictions for more than several days ahead arenpeafdy numerical
weather prediction (NWP) models. These are developed by metestsl@gid generate
predictions in low resolutions for large areas. Predictions for ujpwéodays-ahead are
commonly governed by physical, statistical or combinations otthves methods. Physical
methods utilize the predictions of NWP models as inputs and cortbielgghysical local

wind conditions of smaller areas to enhance predictions. For sharptedictions (hours to
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one day-ahead), statistical models are more suitable. licydarf time series models have
been developed to improve predictions (El-Fouly, El-Saadany anth&&@08; Sanchez

2006; Torres, et al. 2005).

The short term prediction of wind speed for power generation purposesng improved
over time. Yet, according to a recent study absolute mean iarthe case of day-ahead
prediction is still 25%-30% of actual output. An hour-ahead prediction single site

incorporates an approximately 10%-15% absolute mean error (Smith 2008).

When forecasting aggregate wind power in a region, prediction em®reduced because of
aggregation of forecast errors. Smith (2008) reports that thehdsg dorecasting errors in a
region are 15%-18% and the hour figures fall to 6%-11%. Forecasigrggate wind power
has to take into account the spatial correlation of wind speed nmedgie. If wind speed is
strongly correlated over space, reductions in prediction enoutd be limited compared to
the case of weak correlation. Employing spatial statistioglats, it was shown that the
decrease in prediction error is related to the size of thgrgeloical area considered rather
than the number of wind farm sites in a region (Focken, et al. 2002; Holttinen 200&)sBec
spatial correlation limits the smoothing effects proposed byge larea, the reduction in the

errors of aggregate prediction are not unbounded.

Central wind forecasting systems have been developed and adopedoagoing basis in

some regions. Some of these systems are still experimertah qilot stage while others are
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already being practicéd Besides offering the most accurate predictions to market
participants, central systems support the competitiveness ti@tganarkets. The presence
of central forecasting system in a market makes the froofiawind power predictions

common knowledge and promotes market coordination.

In most deregulated electricity markets in the U.S. bidding windepow the day-ahead
markets is allowed. But in practice, wind power producers usually dpamtitipate in this
market. Instead, their energy is taken into the system asniitted whenever it is
available. Since the marginal cost of wind power generationres #eis most efficient to
utilize all applicable wind energy before dispatching other gemmstatntroducing wind
power to the system only in real-time minimizes the short term ressguéements for wind
power integration. By doing that, power systems operators avoid thies eénvolved in
forecasting wind power for more than an hour-ahead. Then, wind power prodreer
compensated at the equilibrium price determined by conventional supipgyand demand

forces.

Imprecise day-ahead forecasting of wind power and financralpes levied on deviation
from supply commitments discourage wind producers from particgpas players in the
day-ahead markétsin cases in which the wind power producer is defined as aitapac
resource in a region, he receives capacity market revenuessban ludbligation to schedule

its capacity value in the day-ahead market.

" Some operating forecasting systems are in Aldgieatronic SO, California ISO and ERCOT. NY ISO sise
persistence forecasting.

% In the U.S. energy imbalance charges may appnéfigy deliveries differ by more than +/- 1.5% frdweir
day-ahead schedule.
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Previouswork and the contribution of this study

Price modeling has been studied extensively in the deregulateticthe markets era.
Stochastic based approaches have generated models of high precisiomceéldrandels
have been developed to reproduce successfully the unique dynamicsto€igleorices.

These models however are limited by their strong dependencysbtrolpservations. The
stochastic approach is extremely sensitive to realizatbridack-swan events Focusing

only on price dynamics could have never predicted or explain the daus®s improbable

event such as the electricity market crisis in California in 2000/2001.

The ability of stochastic approaches to capture ex-post stakiptioperties depends heavily
on the structure of industry, design and market operation from vgnict realizations are
drawn. Significant developments or changes in electricity markahnot be examined
properly by stochastic models. In fact, the focus of my resegureltion - the increasing
penetration rate of a new intermittent energy resource — i3od djustration of such a

dramatic change.

The fundamental approach is the one that is suitable for our needsitrbaection of wind
power not only affects the cost structure and aggregate power duppdyso changes the
financial risk involved in electricity market operations. Fortth@ason, a model which

emphasizes firm behavior needs to be developed. As more producerghedtgathnology

® Nassim Nicholas Taleb, the author of the book TheelBSwan: The Impact of the Highly Improbable (2)0
summarizes a black-swan event“Bgst, it is an outlier, as it lies outside theealm of regular expectations,
because nothing in the past can convincingly ptonits possibility. Second, it carries an extremgact.
Third, in spite of its outlier status, human natunakes us concoct explanations for its occurreritar the
fact, making it explainable and predictableThe NewYork Times, April 22, 2007.
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(i.e. market penetration rate increases), the need for econoalisia to understand market
dynamics is strengthened. However, our short review shows thatlanofdelectricity
markets that are based on classic economic theory are veryedivetbeir behavioral

assumptions, market structure and technical specificity of the power system

The current state of knowledge of the economic framework of rigiect markets is
insufficient for our purposes for several reasons. First, all Sudgarding risk management
reviewed here share the same simplifying assumption thatielly market participants are
risk averse. This simplification of the role of risk is to &mgically that firms dislike risk
simply because they dislike variability in income. Objective fianst with a risk aversion
component collapse in most studies into a mean-variance formaidavor higher return
and lower variability). By making this assumption, researchesume that objective
functions of electricity market participants should treat loadiptien error in a symmetric
manner. However, the financial and economic consequences of overipredind under-
prediction of load in the case of electricity trading aresyodmetric. Thus the effect of risk
in a market that faces a perfectly inelastic demand iktirma needs to be more carefully

modeled.

Electricity is a commodity that cannot be stored economically.tkat reason holding a
guantity that will not be consumed results in an immediate losd émube expenditure
associated with the excess units bought in advance. In liberaliadatsy this loss is not
inevitable because excess volume may be resold at the day-aheadadis or settled by

a financial instrument. However, since load forecasts are publgtte&nown to all, it is not
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uncommon that many LSEs within a region make the same errothiBaeason, reselling

electricity under these circumstances is not a desirable outcomelioldés.

The under-purchase of electricity on the other hand exposes LSEs tonapat price
volatility. The extreme volatility of wholesale electricjyices proved to be devastating for
LSEs in extreme cases such as the California crisis medtaim@ve. Even if the probability
of a catastrophe is low, its outcome can be very costly. In lithetiae above, we suggest an
alternative approach for modeling firms’ objective functions irptératwo. Our approach let
agents analyze the possible consequences of price volatility irasieeof under or over-

purchase as opposed to taking risk as a loss fpetae

Secondly, most power generators are not able to supply elecinsigntaneously. Due to
ramp-up time the electricity supply curve is not stationamyfakct it corresponds to the
generation capacity, which is applicable if needed, to suppbtrieiey for a particular

delivery period in the future. This is important for wind power intégmabecause ramp-up
time determines the feasibility and the cost of generating pmwease of a sudden drop in

wind power supply.

Lastly, studies of wind power integration have concentrated mostlyegohysical aspects of
integration. While electricity demand provided the main ung@stan electricity markets,
the integration of wind power introduces uncertainty from the supplg. Electricity
markets are usually organized as a two-settlement procdssomet market for short-term
forward contracts (e.g. day-ahead or hour-ahead) and a spot markie¢ thkme of trading
forwards, firms have expectations about real-time load and prluehwvill be resolved at

the spot market. Because wind power forecasting has particiafstisal properties,
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forecasting spot market outcome in a region with significant amafrwind power capacity
requires particular consideration. For this purpose one should modeltisicstaf regional
wind power and the dynamics of wind power forecasting. In thidyst develop a novel
numerical methodology for simulating the probability distribution fumgi(pdf) of regional
wind power and wind power forecasting associated with a prospextpansion of wind
power capacity. Constructing these pdfs is essential for undeirsgathe uncertainties and

risk involved in wind-integrated electricity markets.

Market uncertainties impact the decision making in deregulatextrieity markets and
thereby equilibrium quantities and prices. To my knowledge, no economic frameagoyketh
been proposed to analyze the adjustments in the behavior ofcgeabarket participants in
response to the introduction of an intermittent energy resource. lisbertation | introduce
a theoretical framework and a numerical methodology that etfablenalyses of electricity
markets in general, and these which face a new economic enviromneatéd by an

increasing share of wind energy.

Organization of thisdissertation

The dissertation is organized as follows: Chapter 1 provided deiadst the research
guestion, the fundamentals of deregulated electricity markets diteraure review. In
chapter 2 a new theoretical framework for modeling the twitessnt process in electricity
markets is introduced. Then, numerical experiments and sensitinalyses demonstrate the
gualities of the proposed model. Principles of wind power are explaingtapter 3. In this

chapter we make use of wind speed data in lowa to exemplify athyg Stiatistical and other
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features of wind power generation. Chapter 4 provides an extension ahdabeetical
framework developed in chapter 2 to account for deregulatediakycmarkets with wind
power. In doing so, we also expand the theoretical foundations to congiEresiey market
outcomes and welfare distributions with regard to the ownerdhipnol power capacity. A
novel numerical methodology for the simulations of the conditional pdavied power is
developed in Chapter 5. The goal in this chapter is to mimic the dgmarhinformation
regarding the availability of future wind power at the timeratling short-term electricity
forwards. In chapter 6 we couple the theoretical framework and thericahtmaethodology
to generate predictions regarding the possible market outcaméed by selected scenarios
of wind power expansion. Chapter 7 concludes the findings of this study aies rmome

suggestions regarding future research.
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Chapter 2: An electricity market model

Characteristics of adesired model
Studying our research question requires an economic-based modppngach. The

following are the qualities that such a model should demonstrate:

e Capture the main economic drivers in electricity marketdudeg the evolution of
load, characteristics of supply and risks associated with electricriget@peration

e Describe the behavior of market participants in a realistic manner

e May be calibrated easily to fit the characteristics of load in @iffeperiods

¢ Flexible to accommodate various scenarios of integrating wind pewerno added
complexity

e Generate equilibrium measures of prices and quantities thavfethtistical properties

of real-world realizations

To our knowledge such a model does not exist.

A model developed for thiswork
We propose an oligopolistic equilibrium model of a deregulatedrigiég market. The
theoretical framework is developed to model the dynamics atrigigy trading patterns

toward a specific delivery period in the future. We adopt tmeentimarket design of a two-
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settlement process, where short-term electricity forwareldaing traded and scheduled for
delivery at the day-ahead market, and then power is balancéde imelivery period.
Electricity is not storable thus the delivery period is alsoptreod that power is generated,
transmitted and consumed. For that reason, we denote the deliviey asreal-time The

day-ahead market will be referred tonaarket for forward contracts

The model consists on an Independent System Operator (ISO), Lodck Emntities (LSES)
and Independent Power Producers (IPPs). The ISO manages the ggstem and
administrates wholesale electricity markets. In addition|$&makes predictions regarding
electricity demand and available wind power (if applicable) ato#tginning of the trading
period. These predictions are accessible to all market partisidz® firms are the natural
buyers of power in the model. They are committed to deliver alized load to their end-
users for a fixed short run retail price. Since LSEs faceastieldemand in real-time, they
have an incentive to trade power via forward contracts and byetthate their exposure to
upward spikes in the spot price. IPP firms generate and supply powesalitime; they are
strictly sellers in forwards markets but may buy back emtdrin the event of excess supply
in the spot market. IPPs have a time-sensitive convex cost fumdgtich characterizes the
various types of power generators and a range of fuel inputs imhsenodel is based on a
double-sided auction where both LSEs and IPPs engage in a Cournot compgté
assume that all players have perfect information about thebdistm of the spot price and

do not impose any risk preferences on their behavior (i.e. risk neutrality).
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The model does not attempt to examine electricity commodities ththe spot power. The
outcomes of wind power integration on subsequent markets (e.g. gnsélaices, reserve

capacity and others) may be added to the model in the future.

Load forecasting

Electricity demand varies by season, holiday, day of the week, didine day and other
factors. Our model addresses one particular future delivery patiedtime but may be
parameterized easily to accommodate any load characteotany particular period. Since
both load and wind speed data are usually reported on an hourly basignsgtruct the
model such that a period in the model corresponds to one hour. We focusstatisties of
the day-ahead forecasts for the rest of this study sinces tifis time that electricity forwards
are being traded in nearly all deregulated electricityketar Although not treated in this
study, we provide in this section a more generalized framet@oekplain how to go about
examining alternative timings for trading forwards. This rhayuseful for considerations of

market design.

First we construct a synthetic time series of loads, whilhoe used to simulate the short-
term evolution of electricity demand. Focusing on a specific period #@e, load is
commonly considered to be normally distributed (Bessembinder anchder002; Loutan
and Hawkins 2007; Oum, Oren and Deng 2006). The dynamics of elgaleaitand may be
fitted by several Gaussian time series models; we emp@oy & fairly simple model that

accounts for the fundamental characteristics of load dynamics.
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Let electricity demand at timefollow an exogenous stochastic processfdf(q) type:

Xt =M+008t +918t—1 +"'+9q5t—q (21)
wherepu is the expected value of load when taking into considerationhti@ateristics of

the period in question. The error terms follow the standard distribution

&N (0,02) . (2.2)

Assume also th#t, = 1 and thefs satisfy stationarity conditions.

Knowing the distribution of load and prior realizations, one could infaityeie distribution
of the prediction at each period according to how far apart thiatdpsrfrom real-time. That
is, the distribution of the prediction of load in peribdbased on information at timeis
given by

N(u, (68 + 67 + -+ 62)0?) if T>q

Xr|Qe~ ,
N(u+ Orerr + -+ 0460_q, (02 + -+ 02_1)02) if T<gq

(2.3)

where(); is the information observed up to timeNotice that a prediction precision is non-
decreasing with the number of innovatiog) and non-increasing with the prediction
horizon(T). For example, a long horizon prediction has an expected pyane a variance
that is composed from the number of innovations which have not occ8ueld.a prediction
would be vague compared to predictions of shorter horizons. The expeaiedo¥a one
period ahead prediction is composed of innovations which are already Khbe/nwvariance

of this predictive is of size? only.

This simple representation of load provides the short-term dysanit the statistics of load

prediction. The choice of #A(q) model is convenient for applications in numerical
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simulations (illustrations are provided later in this chaptem).dmpirical purposes, load data
in time series format conform better teA& (p) model (the lags of load are observed while
the innovations ofMA process are not). Provided that standard assumptions are met, the

lagged coefficients of load can be estimated and used for calibrationra yubrk.

Power generation

Typically, an electric industry is characterized by varityses of power generators and a
range of fuel inputs. For example, nuclear and coal plants ge kare costly to build, and
generate power at the lowest heat rate |é%eBmaller generators which run usually on
natural gas and oil have lower fixed costs. They are charactdnzbigher marginal costs
because they run at lower efficiency levels and utilize ensogyces which are historically
more costly than these used by larger plants. The portfolio @rgims owned by an IPP
firm may be ordered in terms of their marginal cost to obtaicost curve, which is
increasing and convex. Another fundamental feature of this curvet i thaon-stationary.

It is time-sensitive since turning on generators is constraiyedammp-up time and the
associated start up and shut down costs. Next, we give some gtaiks dbout power
generation technology to demonstrate the importance of this demtuglectricity market

modeling.

Power plants are classified by their purpose to serve basendali@te or peak load periods.

This classification refers to the flexibility of a generato adjust to sudden changes of load

'° Heat rate is used to measure how efficiently a geaeconverts BTUs of heat to kWh of electricity.
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and the associated tradeoffs in the efficiency of power produ&ase load plants are in use
continuously except for maintenance shut down periods. These largeydantsinly steam
turbine technologies powered by coal or nuclear fission. Gemsr#tat serve base load
require a long ramp-up time and may need many hours or day libéy can provide a
stable flow of electricity and achieve their full efficienpgtential. Thus they are seldom
responsive to errors of load predictions. Peak load plants areo#tdlexible generator units
because they are the least costly to turn on. In general, sonaiiethave a shorter ramp-up
time and higher marginal cost. Gas turbines are regularlytosadjust for periods of peak
load fluctuations. Their response time is normally between one andhdous according to
size and type. For periods of intermediate load, combined cysléugaine (CCGT) plants
are usually turned on. A CCGT technology combines steam turbine wg#s aurbine to
enhance the efficiency of power generation. Using a heat recoeary generator, the waste
heat from gas combustion is utilized in a steam cycle. Whietgrbines efficiency level is
in the range of 10% to 30%, a modern CCGT unit may reach efficleael/of about 60%.
However, since their ramp-up time is longer, CCGT units are typicalty diggng periods of
intermediate load. To generate power immediately, internal combustioresmgay be used.
These are small generators which usually produce elegtirioin oil almost instantaneously.
Since they generate power in very low efficiency levels, treyused mainly for peak load

periods and for ancillary power.

In line with the above, we consider a time-sensitive supply curveciitve accounts only
for the generation capacity which if needed, is applicable to wyppker in a particular

delivery period in the future. The set of applicable generat@sacterizes the IPP’s supply
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curve at each period prior to real-time. Clearly, this coamnétion has some significant
financial applications. For example, if producers turn on some afdbaerators just if they

are able to sell their output in advance (e.g. forward contraotegr would be less costly to
generate because the capacity which has relatively loaggr-up time is characterized by
lower heat rate. More specifically, the day-ahead supply ceoreeSponding to a day-ahead
forward market) includes more generators that are able to regpohdnges in load at lower
cost than the applicable generators in real-time. Theredackprediction error a day before
the delivery period has different financial consequences thagsathe error made just a few

hours before the delivery.

We assume that IPPs have an identical set of generatimgotegies and that capacity of
peaking power plants is large enough to accommodate any possiblerdalization.
Essentially, this is equivalent to the supposition that the systeratopenanages capacity

and ancillary services adequately.

Start by denotingr as the amount of electricity that is pre-scheduled by acpkatilPP for
delivery in real-time. Then, the costs of power generation are gavbynigvo possible states
of the world. If production (denoted lgy is lower tharg, then there is no need to turn on
additional generators in real-time. In this event power isgogénerated efficiently and at a
relatively low cost. In contrast, if realized production is higheng;, generators have to be
turned on. In this state of the world, costs of generating power gherhfor two main
reasons. First, most idle generators cannot produce power instéintlye that can are

characterized by very high operating heat rate. Second, stast® during ramp-up time
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drive marginal costs up. Those startup costs account for thevtaimh generators are turned

on but their output level is still low.

We assume the following function to model IPP’s marginal cost of power proddction

arq if qge=q>0

2 2.4
arq+as(q—qr) if §>q=qr (24)

C'(q,qr) = {

where a;, a; = 0 are parameters ang is the upper bound for the output of generation

capacity owned by each IPP firm.

The parametex; characterizes the marginal cost of generating power, whidlated only
to the quantity produced. In the state of the world where the margiitak produced by a
generator which was scheduled to deliver power in advance, thataserall marginal cost.
If IPP’s production level happens to be higher than the preschedulegitgaga incremental
costa, is involved in turning on additional generators toward the deliverygefn this

event the marginal cost is higher and thus constructs a spot powey supg@ which is

steeper. The subscript is used to differentiate between the time of predatthg power and

the delivery period (spot), denoted by subsaript

The assumed linear marginal costs are a direct derivative ofagicactyst function. The total

variable costs of power production are expressed as

0.5a,q> if qe=q>0

co L (2.5)
0.5a:q* + 0.5a5,(q — qr)* if §>q=qr

C(q,qr) = {

" Linear marginal cost functions are being used comynfor modeling the costs of generating power Fo
example, the supply function equilibrium model ($hfroduced by Klemperer and Meyer (1989) has been
applied in numerous studies of electricity mark€ther examples can be found in Bjorgan, Liu and/draee
(1999), Sun and Tesfatsion (2007) and Tseng anz @802).
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Incorporating a two-state of the world cost function has a signifiadvantage because it
allows for the modeling of spikes in production costs which are naebngxplained by
high realizations of load. Sudden increase in generation costs sanbal caused by
scheduling insufficient generating capacity in advance. This lmeathe outcome of profit-
maximizing behavior or errors in load predictions. In both case®ailrtime the economy

cannot avoid startup costs which may drive marginal generating cost diy.rapi

Spot power and firm entry

Markets for spot power (day-ahead, real time and others) aerafjgnadministrated by
uniform price auctions. IPP and LSE firms submit their bids tontlagket administrator
(usually the ISO itself) and generators are dispatched hy Ithweest bids until system
demand is met. The bid of the marginal unit clears the marketdetermines the market
price. This method is commonly adopted on the ground of the efficiencies asbacthtthe
competitive behavior of market participants. If sellers and buydrgheir marginal costs and
maximum willingness to pay respectively, economic theory tedlghat the allocation of
resources will be efficient. In electricity markets howeesnpirical evidence (see chapter 1)
suggest that the assumption of competitive behavior is not alwagblsusince each LSE

firm represents large numbers of consumers and the number of IPP firmsionasegnall.

If IPPs exercise market power, the degree to which thegtdesto manipulate market prices
depends on the timing of market operation. Although the same homogeeuusdity is
traded in both forwards and spot markets, the cost structure is ffergmti. Due to ramp-up

time and fuel costs, peaking plants are turned on mainly for batapawer in real-time,
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where base and intermediate load plants are the core supply ofipdaevard contracting.
Moreover, peaking plants are relatively small and do not redngie construction costs.
Hence supernormal profits in spot market may encourage the ehtnew peaking
generators (e.g. Newbery 1998). Base and intermediate load plarthe other hand are
more expensive and require more time to build. Therefore constiuatithese plants may
be considered only in the long run. Consequently, unlike peaking plants, teg\stiar
trading the energy output of these plants is less threatenedtilyy This environment gives
rise to the claim that the degree of competitiveness of aliggtimmarkets governed by
uniform auctions is negatively linked to the time of trade. In othexdsyamarkets which
trade power closer to the time of delivery are expected to be ocmonpetitive and cannot
sustain high mark-ups. Based on the motivation of preventing entry,défRavior in spot
and forwards market may diverge greatly. First, we will focushenspot market; assuming
zero construction costs of peaking plants motivates perfect competighavior in real
time'%. On the other hand, market power may be exercised in markdts@rd contracts.
We will present a static model of oligopoly and analyze sepaia®ts’ and IPPs’ forwards

positions to characterize a symmetric Cournot-Nash equilibrium.

Spot market
If the threat of entry motivates IPPs’ to bid competitivelgha spot market then we know

that the realized spot price reflects true marginal costs. That is

2 The zero construction cost assumption is madecdowenient presentation of the concept. In the cdise
positive construction costs of small generatorBslifhay price their output up to their average cstevent
entry.
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P =C'(q%,qf) = =C'(g", qi") (2.6)

whereP, is the spot price and is the number of IPPs in the electric industry.

Given the number of forward contracts offered by each firm laadaict that power must be
balanced in all times (i.&} ¢™ = X) one can solve for the spot market outcome. For

example, foM = 2 and assume without loss of generality iat> g+ the spot price is

=X if 2qL=>X>0
(at+as)X—asqp o as(qp+af)+2acqf 1
P(X,qp,q7) = 4 Y e if a2 X >24q5 (2.7)
Gty By 1 2Y as(ap+ap)+2acqf
Lz X+ X —qr—qp) if X> o

and firms’ production levels are

X X .
( {E’E} if 28 =2X=0
1 1 1, 2 2
1 24 asqpt+acX (at+as)X—asqF} , as(qp+qf)+2acqf > 1
la"q°} = {l { 2ap+as 2aptag if artag =X >2qF (2.8)
x | as(aF—af) X as(q%—q%)} - as(qr+ap)+2aeqaf
k{z + 2(ar+ag) 2 2(ar+ag) if X> ap+as )

The first parts in (2.7) and (2.8) describe the case that capemitgd via forwards is
sufficient to meet realized demand. The second is where onlylfiasdds capacity in real-

time and the third part is where both firms startup generators in real-time

Next, and for the rest of this study, we focus on the existandethe characteristics of a
symmetric forward position case. That is the caseMofdentical IPP firms where the
Cournot-Nash equilibrium ig}t = --- = ¢¥. Focusing on the symmetric case simplifies the

analysis since we need to examine only two states of the warklisOvhere no generators
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are being turned on in real-time and the other is wherermi$ fturn on generators in real-

time. For these two states it can be verified that the spot price is

O—’t

P(X,qr") = a; ag . (2.9
wX Tt (X XYa@) if X>yqr
whereg? = {qi, ..., ¢¥3, and production level of firmis
X
. - if Y¥qr=X20
q'(X,qr") = s (2.10)

X
M + Mty ((M - 1)CIF Z1m¢qu ) if X> 21 qr

Assuming symmetric forward positions, we can examine the changproduction levels
and price caused by deviation of one producer. In the event that paded tria forwards is
larger than realized load, deviation in the forward position has ndisagrie on the spot
market. That is because no additional generators are needsad-timre. On the other hand,
in the event that all firms generate additional power in iesd-a deviation has an impact on
generation cost and thereby market outcome. Suppose tihnoses to deviate, the change
in the level of output with respect to own forward positidf is

q'X,qf) _M-1_ a
. = X
0qr M ay + ag

(2.11)

and with respect teu’s position it is

3 Employing a Cournot approach implies tﬂ%\fgg =0,m=1,..,M,m#i.
F
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aqi(Xl C_I);n) 1 aS
—_— = —— X — =1,..,M, . 2.12
oqpt M a;+ a; m m#l ( )

dq™(X,4F")

A =0,
dqg

Notice that since demand must be met at all times WEfjet

Finally, a Cournot firm that chooses to deviate from the symmetisition expects (in the

case of turning on generators in real-time) a spot price change of

OR(X,qr) _ _ as (2.13)
gk M- '

These derivatives become useful when we analyze the IPPs maomjzetblem.

The Cournot players (both IPPs and LSES) observe both load predictioftsveaudis offers
made by other firmfé. Therefore we may treat the distribution of load and thereby the
conditional distribution of spot price and expected production levels as @orknowledge

in our model.

Load Serving Entities and e ectricity demand
The objective of this section is to construct the aggregate dewawnd for electricity

forwards. AssumeéV identical LSE Cournot firms where each is committed to deliyar

14 Conceivably, participating and observing the omtecof 24 day-ahead and 24 real-time electricity kesiar
being cleared on a daily basis may be considerddasag complete information about the distribut@frspot
price. In addition, electricity markets, unlike amiher commodity markets, are unique due to thegmee of an
ISO. As system operator and in most times the nia#minister, the ISO reports the conditions of ploaver
system continuously and make predictions accessibddl. The 1SOs’ reports also include supply aednand
bids; volume of forwards traded and market prié@sing so, the ISOs act as coordinators and dimitiigh
value of private information. In addition to thesmnsparencies, electric industries are typicallgren
concentrated than other industries thereby makiragegiic modeling approach most relevant.
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portion of the realized amount of electricity demand. In the shortawyedr or more in the
context of building a new large generator) LSEs are compensgai@didted electricity retail
pricePg. In every period the ISO announces a load prediction which is superiany
private forecast. Since this forecast is adopted by all rhadwdicipants, information about
prediction is symmetric. When overall load predictioX jseach LSE’s expected demand

isX/N. Armed with this information and taking its rivals’ bids asegiyLSE;j maximizes

profits by choosing a forward positim;i. That is

N
= ] v +n
N = m:;;xE T op | X, Z Xp

x .
F n=1,n#j

= [Pz — Pplx) + (2.14)
j P, — B | X, Z P+ || x (N — x{,) fo(X|X)ax
0 n=1n#j
wherexy is the quantity bid of playen, Pr is the market price of a forward contract and

f(X|X) is the conditional probability distribution function of load at the tiofigrading

forwards.

LSE’s expected profit has two payoff components; the first companesquation (2.14)
stands for the payoff in trading forward contracts while the second compsrikeeataxpected
payoff associated with balancing power in the spot market. Sutbstiir the expected spot

price in the symmetric case (2.9), the profits may be written as
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N = [Pz — Pplx}

N n, .J
YinzjXFtXp

b [ [P (- ) xiRax

B y (2.15)
(04 a ;
+ f PR—MtX—ﬁS X - Z XE - x)
levnijig"-xj n=tnz
X N
X (N — xF) fx(X|X)dX .

The two integrals in equation (2.15) account for the two cases oftodsdance power in
real-time. The first integral is the expected spot payoff whenLSE has over-purchased
power via forward contracts while the second stands for under-parcigsower. In the
former, Contract for Differences (CFD) is put into effect.typical CFD states that any
deviation between forward power and spot power may be traded fogalmed spot price.
Essentially, CFD is a financial settlement that helps LSHE®dge against volumetric risk on
one hand and on the other helps IPPs avoid the cost and transmission pesseasted
with spot power surplus. The importance of a CFD settlement caisdied in detail in

appendix 1.

Taking the derivative oN with respect to the decision variable and employingL#ibniz

integral rule we get
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Zﬁnijf?‘l'x]
0 a .
— = [Pp = P¢] - j [pR - Mtx] fx (X|X)dx
0xg
0
0 N
A as _ i
- f PR—MX—H X - Z xF + x7 (2.16)
j n=1n#*j

ag (X
M

== xf)| e (x1R)ax .

The first order condition (FOC) for interior profit maximization is

Zﬁnijf{’t"’xi‘
o, A
Pp = f MXfX(X|X)dX +
0
@© N
ae Us - j
j 'l PO z X —x (2.17)
M® M _ F
SN TR n=in#j
g ; A
7 (ﬁ - x;) fx (X|X)ax
or
as [* X ; o
P = EIBSO)] + 5 (5 =) x|®)ax . (2.1

M lev,n#:jf?"'x{"
Notice that the second order condition (SOC) is clearly satisfied here as
%N 2a [~

— = fr(X|X)dx <o0. 2.19
ax;2 M JSt e e, 1) (249)
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Condition (2.18) describes the firm’s inverse demand function forafi@veontracts. It is
interesting to see that an LSE’s willingness to pay folomvdrd contract exceeds the
expected spot power price. Assuming risk neutrality generally dtive price of forward
contracts to the commodity’s expected spot price (storagereserent for electricity).
However, this result need not hold for the case of electricityceSelectricity has to be
consumed at the time of production there is an economic value fochprdeding power for
production (e.g. forward contracting). While for most commoditiestithe of production
does not impact production cost, it does affect electricity gBoeraost. For that reason,
according to condition (2.18) the LSE maximizes profits by choosfogaard position such
that the marginal contract bought for priEge is higher than the expected spot price. The
wedge can be explained simply by the financial consequences ainictcting the marginal
unit. In this case the marginal unit is not scheduled in advance, dreeiiéé price also
includes the expected cost of starting up additional generatoesexipected additional cost

of not scheduling the marginal unit is expressed by the RHS term in equation (2.18).

Since LSEs are identical all arrive to the same FOC. Comgiddre symmetric Cournot-

Nash equilibrium where} = x2 = --- = x¥ = x, the aggregate demand is
Pz = E[Ps()] + MISV X — Xp) fx(X|X)dx (2.20)
XF

whereX; = Nxp.

Corner solutions may arise where at optimumx{Z )= 0; the price of a forward contract is

too high to enhance LSE’s expected profits or Xg)— oo; which is the case of a fully
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hedged position. i.e. the forward price is lower than the expected sp®tfq@r any amount

of forward bought.

I ndependent Power Producers and electricity supply

We start analyzing IPPs’ behavior in a fully deregulated whtdeslectricity market. That is
to assume that IPPs’ actions are not constrained by the n8Qharefore are motivated
solely by profit maximization. Next, acknowledging IPPs’ potntnarket power we will

incorporate a lower bound on IPPs’ output. This will be a more rieadisamination since in

principle IPPs can withhold a significant amount of capacity to raisespaiue profits.

The optimization problem of each IPP is similar to that of a monopoly which &acmverse
demand function (equation 2.20) and takes its rivals output as given. BoiPRli chooses
forward positiong’: to maximize its expected profits

M
% az")

m=1m#i

M = maXE <7T1ipp

ar

M
=PF<)?,qf;+ > ﬁ?)xq}% (2.21)

m=1m=i
0
|
0

wheregr" is the quantity offered by rivah taken byi as given.

M

p(xabe Y ar ) -ah) - ol ab)| e,

m=1m#i

ExpressM with respect to the two states of the world
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M —m, i
Ym=1,m=i 4F t4F

v [ R0 -c@) AxIRax

(2.22)
© M
+ f PS<X,q};+ z ‘7?”>><(q"—q£)
Shm=1m=i AR +aF m=1,m=i
—C(q' qr) | fx(X|X)dx .
Taking the first derivative
2%:1,m:iqlrfn+q;~"
oM  0P:(-) . R
r= a0 [ ROAMKIRX
99r 99 ;
+ Zx (gl —qgt)+P() x|——-1 :
_[ [ aqll: (q qF) s() (aq};

ZnM1=1,m$iq;'n+qli'v'
- C'(q, q};)l fx(X|X)dx .

Writing explicitly the derivatives of the spot price and the cost function
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M ~m i
Zm:l,m#i qrF +4fr

oM 9P .
- T+ ) - [ rostina
0 s aq' (2.24)
+ f [ X(q qF)+P()X(6q} 1)

M —m
Ym=1,m=i AF +af

i

- 0q . - [0q" "
‘ Sal as(q' — qf) (E - 1)] fx(X|X)dx .

—agq

Employing symmetry and collecting terms

d d
M _9PQ) iy p) — ERQ]
aCIF aCIF
. » (2.25)
va(1-5) [ @-a)AxIRax,
Z%:l,miiq;‘n"'q}i“
The FOC is
Pe(9) = E[R()] - aqf)qﬁ
F
w (2.26)

—a <1 - %) f (qi - q;«") fX(Xl)?)dX'

M =m i
Yin=1,m=i F T4F

The first derivative of the forward price with respect to quantity is

aPF(') as( 1 *© ~
: 1+ )f Fo(X|R)dX . 2.27
0qp  MA NIJsh iapeah (1) (&:27)

Solving for the symmetric Cournot-Nash equilibrium wheke= qz = -+ = g = qr gives

the following optimality condition
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~ Qs 1 * ~
Pr(X,M = E|P(- —(1+—= X|X)dX
(8. Mar) = EIROT+ 45 (1 ) ae | A(01D)

. (2.28)
~a(1-5) [@-a fx|Rax.

Mqfp

The willingness to sell forward contracts may be higher or |lalvan the expected spot
price. Withholding capacity has two effects. On the one handiittanas high prices in both
spot and forwards markets. On the other hand, an IPP firm that chooses to offtarmare

contracts sells more power in the spot market as well.

We show in appendix 2 that the IPP’s profit function is strictigcave ingk. This confirms
that if a symmetric Cournot-Nash equilibrium exists it is ajuaisymmetric solution for the

IPP’s problem.

Solving the model
If there is a forward pricgz; at which the market clearing conditighM = Xy holds, then
we say that the market for forward contracts has an inteyrametric solution. Equating

aggregate demand with aggregate supply (equations 2.20 and 2.28) the following must hold
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Pe(Xp) = E[Ps()] +

as * . ~
- jX =) f (e

s 1 * ” v
= E[P,()] + %(1 + N) qr ]X;fx(Xlx)dX (2.29)

— g <1 - %) j-o(q — qr) fX(Xl)?)dX
Xp

which solves for the equilibrium quantity of aggregate forward contracts

MN+M— Ny Jp X fx(X|X)dX
Xp = ( 1) X —5 — (2.30)
MN + M + fX;fx(XIX)dX
Substituting this result back into (2.20) the equilibrium forward price is
o MN + M —N as ([~ .
PeCki) = BRSO + (1~ i3 1) % i | X (x)ax
’ (2.31)

*\ as(N+1) © ~
= Pr(Xp) = E[Ps(-)] +me;XfX(X|X)dX .

Then, the forward price can be expressed by summing the expecteg@risgoand the

forward premium

Pp = E[Ps()] + Rp (2.32)

where

Ry = — W+ D wa (X|®)dx
FTMNMN +M +1) X '
X*

F
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Preliminary results and discussion

At this point we can make some statements about the equilibrium ecdmah price of
forward contracts. The equilibrium volume of forwards depends on théetuoh IPPs and
LSEs in the market and the stochastic nature and precision ofoleaadsting. It is easy to
see that the equilibrium volume of forward contracts increasekeimamber of power
producers. As the number of IPPs increases, it is less effdoti these firms to maximize
profits by withholding production. It is not a surprising result seérag power producers
engage in an oligopoly game and the demand side in the model is ctyniplelzstic in
real-time. Furthermore, expression (2.30) shows that the equilibriumber of forwards
increases iM at a decreasing rate. This reflects the rate at which market powersthesitin

the number of producers.

In the contrast, the equilibrium number of forwards decreases inutheer of LSE firms.

The explanation for this result is quite intuitive and relatednhto gublic good aspect of
electricity forwards. LSEs share the responsibility to delargy realized amount of load in
real-time. Similar to the familiairee-rider problemeach LSE firm would prefer that other
firms purchase forward contracts which would then lower the #gbespot price for all

buyers. But with a relatively large number of firms, the abditeach firm to manipulate the
spot price is relatively small. Accordingly, the aggregatiingness to purchase forward
contracts decreases in the number of LSEs (illustrated and fufitmrssed in the next

section).

The absence of the cost parametgrsanda, from the expression describing the equilibrium

amount of forwards is a noteworthy result. It means that the ¢évetwards in equilibrium
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is fixed over the range of positive cost parameters. Since d8&Esnd in spot market is
inelastic, IPPs decision on the amount of forwards is contingent asigindution of load
only. Accordingly, the impact of the cost parameters on wetfatebution in equilibrium is

captured only by the forward price.

The wedge between the price of forwards and the spot price edrmothe dynamic nature
of the supply curve. Since the cost of generating power is Biogea the time of trade (due
to ramp-up time), the link between expected spot price and tivarfbrprice is not one to
one. In particular, the forward premium is proportional to the increahetertup cost of
generation unitsa(). This result expresses our assertion that the premium is drywéme
dynamic nature of production cost. LSEs desire to avoid thisrctisé spot market and the
ability of producers to exercise market power in the forwartketadetermines the size of
the forward premium. Notice that the premid@p is positive in expectations and decreases

in both the number of IPP and LSE firms.

Still, there are two cases where the spot and forward priegscoincide and reproduce the
familiar competitive solution under risk neutrality assumption.tfFosnsider the case of
omitting ramping costs from the analysis. This can be exprdss@dposingx, = 0; zero
incremental cost between the two periods of tradends. Then, aggregate demand for
forward contracts would be characterized®by

0 if Pp>E[Ps]

Xp=1[0,00) if Pp=E[P] (2.33)
© if Pp<E[P].

15 To arrive to this result simply maximize equat{@nl5) and impose, = 0.
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In this case the Nash equilibrium is characterized by any ngatiie amount of forward

contracts as IPPs cannot enhance their expected profits by withholdingycapacit

Secondly, there would be no wedge in expectations if the numb@Pobr LSE firms is
sufficiently large. In particular, the forward price convergesht competitive price in the
limit asM — o orN — . In any of these cases the forwards premium goes to zero and the

forward equilibrium price would reflect the expected spot price.

To conclude this part, the model is able to explain the positive fdsy@emiums reported
by many empirical studies (e.g. Benth, Cartea and Kiesel, B¥¥sembinder and Lemmon
2002, Cartea and Villaplana 2008, Douglas and Popova 2008, and Longstaffaagd W
2004). Yet, it is important to perceive a fundamental differencedsgtvour work and the
related body of literature in this area. The results presegtdudomodel are not driven by a
risk preferences assumption but by the basic properties of poweragjen cost structure,
the number of sellers, buyers, and the commonly adopted design ofildexdgelectricity

markets.

Capacity withholding constraint

The equilibrium volume and price of forward contracts developed in preweasons
characterize the solution in a fully deregulated electrizigyket. Our results make it clear
that IPPs have an incentive to manipulate market prices by withodgineration capacity
in the forward market to maximize the joint profits from tpetsand forward markets. While

welfare loss is typically expected in a Cournot competition)dbe in electricity markets is
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more severe than in other markets in which market power is prd$eitis because spot
power demand is inelastic; the power is being generated everntusalite of any capacity
withholding behavior. Consequently, the production of power in real-timebma inefficient
and cause misuse of energy resources. Policy makers and &ehmimt deregulated
electricity markets are aware of this problem. Yet, in practicenot an easy task to measure
when market power is exercised. Overall operating costs and pimdgonstraints are not
transparent. Operating costs includes the incremental cost involve#imgdioi power plants
of higher heat rates, start up and shut down costs and '8ttigtese as well as a physical
withholding due to outages and periods of maintenance are esseniiaie pnformation

and therefore precise mark-ups are complicated to estimate.

Although there is an ongoing debate about what is the effective wagasure and monitor
the degree of competitiveness of wholesale electricity marlsime provisions are
commonly implemented. For example, the Hirschmann-HerfindahkI(dEl) is used as a
first screening tool for market power by governmental agendese caps are used
frequently as an upper bound for spot price. The price cap is usefthhilizeng the

volatility of spot markets and limiting LSES’ exposure to spotgwid-inally, and maybe the
most effective and frequently used tool to deal with uncompetitihavier is to impose a
must-offerprovision. Doing so, ISOs limit the ability of large producerexercise market
power by forcing them to participate and offer their capanityprward and spot markets. In
addition, the 1ISOs examine regularly whether the prices offeyetPBs enable them to

schedule considerable volume in advance, bilaterally and via forward markets.

6 Mansur (2008) shows that by ignoring productiomstmints such as ramping costs, several studies
overestimated the exercise of market power in etégt markets.
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In some markets the expected load is used to determine produespensibilities for
forward contracting. In the California ISO for example, if the amount ofepaleared by the
forward markets is insufficient, a secondary auction takes .plabe Residual Unit
Commitment (RUC) is an auction designed to force IPPs to supplexpected missing
amount based on their incremental cost. In the case that IPRSl@t® demonstrate market
power while trading forwards, the RUC as a more regulatedhamésm, is not a favorable

alternative for them.

Back to our model, a binding constraint on the offered capacity inafdsvmarkets forces
IPPs to move away from their optimal forwards positions. SiRéts are identical it is
reasonable to look at the case where the ISO imposes a symmmtstraint on the
minimum amount of power that each IPP is held responsible ta diféhis case, IPPs do
not have any incentive to offer more than their own constraint bethatwill increase their
distance from the unconstrained (optimal) solution thus decredseig drofits further.

Therefore, the aggregate volume of forwards imposed by the fush-t®nstraints can be

mapped to a particular point on the demand curve.

Frequently, ISOs sets a volumetric constraint which is a fumaif the moments of the
forecasted load. A straightforward example is the one mentiabede, where IPPs are
required to offer at least the expected load. In this casoitvard price mapped from the

demand curve is simply

[ee)
S

Pr = E[Ps()] + —

v ), X — Xp) fx(X|X)ax (2.34)
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which can be simplified further assuming a particular conditigmabability distribution

function.

Computational experiments

We conducted many simulations to evaluate the effectiveness ofatiel in capturing the
economic determinants in electricity markets. We present andsdiso this section the
model predictions and the sensitivity of the results to the paeasnemployed in the
analysis. We consider the following figures for the base-csx®nario in the numerical
analysis. Assume that there are 5 IPP and 5 LSE firms, thepaasneters of generating
power area; = 1, ag = 2 and load is distributed normally and expected to be 100 at real-
time. Also, the standard deviation of load prediction is 5 (mean absshoteof 4% of the
expected value) when forecasting demand at the day-dhédidthe numerical results

consist of 5,000 draws.

Spot price distribution

The model focuses on one particular delivery period at a time. $rece is a great
variability in the seasonal, diurnal, hourly and other temporal ctesistc of electricity
demand we start by evaluating the flexibility of the modebtcommodate analyses of

different delivery periods.

" various sources indicate a MAE of overall loaddicgon in the range of 3%-5%, depends on the seasd
the size of the region.

www.manaraa.com



59

We consider periods thate characterized by expected loads in the ran®® o6 150. The
variance is computed as . Doing so, we normalize the variance with respe:

the expected load of the period in ques

Figure 2displays the densities of spot market prices byeetqul electricity demandn

particular, the middle density is the cthat illustrates the basmse scenaricThe densities
are skewed as implied the two-state cost function. For period$ higher tlan average
expected load the spot price density is shifteldtragd its variation is higher. In reality, ev
hourly prices in a single day are drawn from verffedent distributions. Demand (at
thereby prices) at 2am would fit a density in thk $ice of figure 2 Spot price at 5pm of tf
same day would be characterized by a density omighé side of the same figure as this

usually the peak load hour of the ¢

m50

Frequency

m75
m 100
m125

=150

Spot Price

Figure 2 Spot market price densities by expecelectricity demand
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Load uncertainty

We let standard deviation of load to vary between 5 and 35 to exglerimpact of load

uncertainty on market equilibrium. Given spot price expectationgdhend for electricity

forwards is illustrated in figure 3. As we increase the unicgytaegarding real-time load,
demand for forwards shifts upward and becomes smoother. Thistgeflee higher

probability of making errors in load forecasting and therefore &ase® LSESs willingness to

pay for forward contracts.

.

28 X\

: NG ——
\\

” \\

20

Price

18

80 85 90 95 100 105 110 115 120

Volume

s D(501=5) e D(sd=15) D(sd=25)  emsm=D(sd=35)

Figure 3: Aggregate demand for electricity forwards as a functistaafiard deviation of load

Given demand for forwards, each IPP chooses how much electrictffeioin forward
markets which then determines the aggregate supply curve spahenarket. Equilibrium in
the forwards market is described in figure 4 for various levklandard deviation of load.

The intersections of the dashed vertical line and the demandfourfieewards in the graphs
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in figure 4 describe the equilibrium price and quantity of forwametracts in each. Once the
forward market is cleared, production cost of any possible raahzat load and thereby
spot price is determined. The equilibrium is characterized ¢gpacity withholding as one
would expect in an oligopoly modeling. The kink on the supply curve at thabegun

guantity of forwards describes the shift into a less efficientgpgwoduction scheme in the
event that real-time load is higher than the prescheduled amowent. fFle equilibrium at the
spot market may be depicted as the intersection of the illubtsatpply curve and an

inelastic demand curve created by any given realization of load.
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Figure 4: Equilibrium in the forwards market and the consequeatéme supply curve. Results by
standard deviation of load of sizes 5, 15, 25 and 35 are ddpictégures 4a, 4b, 4c and 4d
respectively

The numerical experiments show that the equilibrium amount of fosnaodeases in load
uncertainty. Demand for forwards increases in standard deviation bandamalso more
elastic. Consequently, IPPs maximize profits by offering moredrd contracts. Doing so,

forward premiums decrease in load uncertainty since more pavgsheduled in advance

(figure 5).
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In the base-case scenario, the expected forward premium is5ab%utind decreasing with

load uncertainty. Similarly to real-world observations, the modeegges higher (lower)

premiums for peak (base) load periods.
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Standard deviation of load

35
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Figure 5: Forward premiums as a function of standard deviation of load

The number of |PPsand LSEs

In a standard Cournot competition the degree to which market powedsecaxercised is

captured essentially by the number of oligopoly players. For exaimmplhe case of a single

producer the model outcome coincides with the solution for the monopoly® pro

maximization problem. In the case of a duopoly, aggregate proilitdoevless than the

situation of two producers acting as monopolies, and lastly, farffecient number of

producers the profits would be similar to those generated undectpesfapetition. On this

aspect, the model developed here generates market power dymwemgt is similar to the

results described by a standard Cournot model.
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In figure 6 we examine the results for the simulations of the-base scenario varying the
number of power producers. As the number of IPPs increases, mdreigjas settled via
forward contracts. This is due to the decrease in IPPs afuligxercise market power by
withholding capacity. For example, the particular parameters gegblbere shows that
without any regulation a single IPP would offer less than 15% ofetpected load for
forward contracting. The amount increases at a decreasing@matéalf in a duopoly electric

industry and so on.

The equilibrium prices and profits generated by different numbensramlucers are not
comparable since the cost function of generating power is convexw¥enay evaluate the
sensitivity of forward premiums to the number of IPPs. Sindahe equilibrium amount of
forwards, the change in premiums also reflect the change iabiliy to exercise market
power (figure 6). Interestingly, the illustration shows that thedel predicts positive

premiums even when the amount of electricity traded via forwards exeeedeticted load.

e FOrward premuim e Electricity forwards

14% 120

12% ‘\ — L 100
10%
o \/ %
8%
/\ - 60
6%
I \ - 40
4% I
L4

Premium

\ - 20

0% 0
0 5 10 15 20 25 30 35

Number of forward contracts

2%

Number of IPPs

Figure 6: Equilibrium electricity forwards and premiums by nund§dPPs in the market (base-case
scenario assumptions)
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Looking at the number of LSE firms reveals a very similandrin the forward premiums.

Except that the premium decreases here are not due to asmangehe number of forwards.

LSEs’ incentive to purchase forward contracts is for the purpodearéasing the expected

spot price. Although the decision on the procurement of forwards is taken omtheviel, it

has a public good aspect for all LSEs; a lower expected spot price.

When the number of LSEs is relatively small, the quantity purchiagean individual firm

has a greater impact on the spot price hence the willingnesyg te p@her. As the number

of LSEs increases, each firm’s ability to influence the spotepis smaller and that

encourages a free-rider behavior. As a result, when we incleaseumber of LSEs the

volume of trade is almost constant but the premium reflects thaniginmg interest in

hedging spot market risk by forward contracting (figure 7).
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Figure 7: Equilibrium electricity forwards and premium by femof LSEs in the market (base-case
scenario assumptions)
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Cost of generating power

Our analytical results from previous sections show that the fdrpréce depends linearly on
the cost parameters anda,. This result holds whether the market is fully deregulated (eq.
2.32) or whether capacity constraint is being imposed (eq. 2.34). Whenokeai the
forward premium we see that the wedge between the spot picéha forwards price is
fixed for any positive value af,. The reason for that is the fact thatis an essential cost
which cannot be avoided in any state of the world. That is ancegeesult since the
demand for hedging power is created by the fact that gemgrpbwer by starting up
generators is more costly. On the other hand, the forwardiyredivided by the expected

spot price is increasing approximately linearlyin(figure 8).

M=2 M=5 M=10 M=20
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Figure 8: Premiums as a function of real-time cost parameter andnfteer of IPPs
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Capacity withholding constraint

The base-case scenario provides solution for a fully deregulatetdaty market for a given
set of assumptions. Keeping the same set of assumptions we cdhipanaconstrained
solution with particular levels of capacity constraints the 1Sy itmpose on IPPs to offer in

forward markets.

The results are presented in figure 9. The model emphasizeffdébeveness of imposing a
capacity constraint in electricity forwards markets. In thimneple the unconstrained
aggregate amount offered by 5 power producers is 80.6, which is in the order of four standard
deviations lower than the expected load. The illustration showshbédbtward price and

IPPs profits decrease in the magnitude of the must-offer carisixatice that the constraint

is much more effective in the range which it is lower thanettiected load. This is due to

the asymmetric financial consequences that all market parttsipaperience if realized load

is lower or higher than expected.
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Figure 9: Equilibrium forward price and IPPs expected profits by actigpwvithholding constraint

Chapter summary

In this chapter a new theoretical framework for modeling deresglikglectricity markets has
been developed. The model complies with the desired charactensticst at the beginning
of the chapter. It incorporates firms’ behaviors in electricigrkets to construct transparent
and traceable market equilibrium measures. In addition, we perform@gutational
experiments to demonstrate how the model can be employed in stuahphed problems.
We presented sensitivity analysis for the impact of parameescribing generation costs,
industry structure and uncertainties on market equilibrium. The modeleshibself to be
flexible and accommodating large arrays of assumptions regatncharacteristics of the

delivery period of electricity.

www.manaraa.com



69

Similar to real-world electricity markets, the distributions tbé spot price at different
delivery periods in the model diverge greatly. Also, the model generates a hatsgen the
forward price and the expected spot price. This result is inwlittethe extensive empirical
evidence suggesting the existence of a forward premium. WHelditerature commonly
refers to this wedge as a risk premium, the results presenteéghbmodel are not driven by a
risk preferences assumption but by the electric industrytsteydundamental properties of

electricity production and the design of deregulated electricity markets.

Finally, we show that the deadweight welfare loss associatadaviully liberalized market
could be substantial. Having various generation technologies, IPPsahawveentive to
substitute away from the more efficient generating units dgpensive spot power
production. This in turn generates sizeable premiums for forwardacts@nd supernormal
profits. When we add a capacity withholding constraint (also known asusd-afier

provision), the welfare loss and premiums are reduced.

In the rest of the study, the model developed here is extended talatimugh examination
of the possible paths and market outcomes for wind power integratigeariicular, the
required extension of the theoretical model is introduced in chapterd4tha appropriate
numerical methodology for simulating scenarios of wind power intiegras developed in

chapter 5.
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Chapter 3: Wind power

I ntroduction

Our objective in this chapter is to discuss the technical, statisind financial principles of
wind power capacity. We start with a review of recent develomnenirrent status and
challenges of wind power expansion. Then, we make use of lowa wied dp&a to explain
and illustrate the basics of wind speed statistics and theat&th of a local wind speed
probability distribution density. Next, we give details about thatie among wind speed,
wind power resources and usable wind power, by exemplifying therpenhce of a typical
modern large wind turbine. In doing so, we explore spatial differemsesgell as month to
month variability of harvesting wind power at selected sites imldwthe following section,
we outline some findings from the literature regarding wind iapabrrelation. This is
particularly relevant for this study since we are interkste modeling an intermittent
regional wind power supply. Lastly, we discuss the implicationsnotrtain power supply

with relation to electricity markets and our economic framework inqueati.

Overview
Global installation of wind power capacity has been increasipglly during the last two
decades. In particular, more than 30% of the world’s wind power capeast added just in

2008 (DOE 2009). The highest penetration rate is experienced by Bemhare wind
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power accounts for 20% of overall electricity consumption. Next, Spaiowled by
Portugal, Ireland and Germany demonstrate penetration ratie irange of 7%-12%. In
many other countries wind power capacity has increased re@nthell, yet accounts for
only up to 5% of overall capacity. When it comes to overall wind power capacitgrkiag
is quite different. During 2008 the U.S. overtook Germany to takdetwk in cumulative
wind capacity with 25,369 MW vs. 23,933 MW in Germany. However, the pige of
wind power consumed in the U.S. accounts only for 2% of overall elégctcimnsumption.
Other countries with increasing wind capacity but still low petien rates are India and
China (about 3% and 1%, respectively). This trend suggests that shevem for large

increases in wind capacity in many countries.

Several linked forces may explain the growth in wind power capacitgcent years. First,
advances in wind harvesting technologies have allowed larger tsirtninge installed. The
average wind turbine installed in the U.S. in 2008 was rated at 1.6 oM¥Apacity, which
is 133% higher than average rated capacity of turbines in 1998-1999. Nswadgineers
have completed the design and manufacturing of 3 MW turbines, whicltha largest
commercial turbines to come online. As we explain in the nexiboee@conomies of scale
are important in wind power production. Therefore, the ability to transpwstall and
connect larger turbines to the grid at sites with appropriate wieddsconditions yields
increasing returns. Scale effects, technological advances bmdudesigns and better
transmission lines have significantly lowered the cost of hangestnd delivering wind

power over the years.
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Government subsidies supporting renewable energy have also idcnegkecing the private
cost of wind projects further. The main justifications for thesdsidies are energy
independence and reductions in environmental externalities from thieustion of fossil

fuels. Life cycle assessment studies show that the energgagatime of a wind turbine is
less than six months over a 20 year life time (Martinez,l.eRG9; Schleisner 2000).
Switching from conventional generators that run on coal and naasato wind turbines
mitigates almost all greenhouse gasses emissions retaté tproduction of electricity.
Martinez et al. show that the cradle to grave environmental cargtiaon of wind project

may be recovered nearly 31 times during the life of a wind turbine.

Concerns regarding dependency on fossil fuels brought forward the amgerto diversify
energy portfolios. Employing various renewable energy sources intfaljpors a practical
way to promote energy security. A renewable portfolio standard)(RRSstate policy in the
U.S. and in some other countries that support this goal. RPSs mdhdathares of
electricity to be produced from wind, solar, hydro, biomass and othexveable energy

sources.

In addition, speculations about fuels reserves and their price behasmmcurage
investments in wind power projects. The intrinsic variation of wipeed is uncorrelated
with fuel markets. From a risk management point of view, thisdbiie may enhance an

energy portfolio in a firm level.

Several factors need to be considered and resolved before thiatiostaf significant new
wind power capacity becomes feasible. The main challenge wgé [&ojects is updating

transmission systems. Wind capacity that exceeds localriefigctdemand requires
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additional costs associated with updating the grid and constructing &elécargsmission
lines. Even so, many wind farms are constructed in rural afeas.is because of two main
advantages those areas have over urban areas: land availabiltindoprojects and the
decrease of the potential problems associated with turbines’ stuado relatively low
population density. Since power systems in rural areas are ndtstcuto handle electricity
flows from large wind farms, integrating new wind capatitythe grid involves substantial
planning and investments. The costs of updating transmission linesiver adalergy from

distant areas to hubs of electricity are usually governed by the regiorahys¢rators.

The physical aspect of setting up wind turbines is another limidiogpr. Costs related to
transportation and installation of large turbines increase expomentith size. Therefore,

the benefit from scaling up wind projects should be weighed aghiestast of the extra
logistics involved. For example, on shore turbines used to be genlargty than offshore
ones due to ground transportation constraints. Also, the delivery (if alplelicand
installation requirements become more complex when dealing wirlaomponents. To be
able to overcome the downside of shipping and handling turbine’s partoogedistances,
factories manufacturing these parts may be constructed mamdiareas. For instance, lowa
and its surrounding states are in the process of creating docwmrgtion of plants for
turbines, blades and towéfsFor that reason, it is not surprising that lowa is ranked second

in the U.S. with current wind capacity of 3043.28 MW and first in winder consumption

18 For example, during 2008 alone the following fitieis came online: Clipper Windpower (Cedar Rapids)
Acciona Energy North America (West Branch), Siemeawer Generation (Fort Madison) and TPI (Newton).
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of 13.3%™° Wind capacity expansion in that region in recent yearsgkimed partly by the

availability of locally manufactured parts.

Finally, once adequate infrastructures are established and tuhisiddseen constructed the
transmission itself is not cost free. Long distance power trigagms and distributions incur
line losses. The costs associated with these losses arailpdsticelevant for wind farms

constructed in rural areas.

Wind speed

Wind is caused by differences in air pressure within the atmosphAi tends to flow from
regions of high pressure to regions of low pressure. The diffenemressure is the outcome
of uneven heating of the earth by solar radiation. Therefore, winatiear may be viewed
based on annual, seasonal, diurnal, hourly and inter-hourly differences.vahesens need

to be acknowledged and evaluated properly for wind energy considerations.

Numerous probability density functions (pdf) have been employed incapphs of wind
speed studies. Carta, Ramirez and Velazquez (2008) carry ouew tesed on more than
two hundred studies describing wind speed frequency distributions. Thefnempséntly
employed is the two-parameter Weibull pdf which has been foandave a series of
advantages. Among these are dependency on two parameters orhyljtflegimplicity and
a good fit to measured data. The Weibull is generally an appmpditchoice for wind

speed modeling with one exception. For regions that have frequentestw®s of no wind,

18.19. 2ZLAmerican Wind Energy Association, http://www.aweg/projects/projects.aspx?s=lowa (accessed
August 09).
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other probability distributions may be more suited. The catalogmezbby Carta, Ramirez
and Velazquez (2008) review the appropriate pdfs in this circumstaneeell. However,
since the decision on location for wind farms is not random, siteslaw wind speeds are
unlikely choices for wind projects. Thus we focus on the Weibull ptigistudy. Next, we
give some details how to go about employing the Weibull pdf to thestne statistics of

wind speed.

Let v (m/s) denote wind speed, (m/s) andk the scale and the shape parameters of the

Weibull pdf respectively, then the wind speed density function can be written as

fv) = %(Z)k_l exp [— (E)k] . (3.1

c
Some families of distributions are obtainable as special cdsbe Weibull distribution. For
example, fokk=1 the Weibull distribution becomes an exponential distribution. In dkse c

of k=2 the distribution is reduced to the Rayleigh distribution, whiapglicable simplifies

the analysis of wind speed considerdblyFor the special case k£3.6 the Weibull
distribution is approximately normal (Dubey 1967). It was shown thaimple data
transformation can make the relation between the Weibull and thesi@a distributions
very useful for studying wind speed (Torres, et al. 2005). The tramsfion is based on the
fact that a Weibull distribution raised to the powena$ also a Weibull. Let = k/3.6 and
raise wind speed data to the powenpthen wind speed data may be analyzed with respect

to the normal distribution. In figure 10 we describe the distributionshircase that wind

% The knowledge of mean wind speed alone is suffidie employ the Rayleigh distribution. Denote mean
2
wind speed byn, the pdf can be describedf&&) = g(#) exp [—%(ﬁ) ]

m
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speed has Weibull distribution with the parameter2.2 andc=3. It is shown that an
approximation to the Weibull may be obtained by employing onéebther distributions
discussed here. The decision on which distribution to apply and the comisggaédness of

fit is determined by the particular shape parameter of the Weibull pdf in use.

0.35
0.3 Weibull (k=2.2,c=3)
0.25 Rayleigh (m=2.66)
§ 0.2 Gaussian transformation (a=0.61)
s
@ 0.15
0.1
005 \
0 —
0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5
wind speed (m/s)

Figure 10: lllustration of a Weibull pdf with relation to other disitions

In the following, we utilize data from lowa to investigate aneé@mplify the distributional
patterns of wind speed. Long run averages of hourly wind speed data fraronsrities in
lowa are available from the lowa Energy Center. The dataemploy is reported in a

frequency distribution format where the number of hours at each wind speed is recorded.

Parameters can be estimated with methods of moments, maxiikelihood, or least
squares. In this study we employ a method introduced by Seguro mnteittg2000). This is

a modified maximum likelihood method for analyzing data in a frequearmat. Denote the
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relative frequency of a particular wind speedoy p(v;) whereZ;p(v;) = 1. The Weibull

pdf parameters are estimated by the expressions

-1

n Yokin(w) <
k — [ lzzlf(v;)(zl)lZIEVL) . ZP(Ul)ln(vl)] (32)
i=1 2 i i=1

and

n 1/k
c= p(vl-)v{‘] : (3.3)
>

Equation (3.2) is solved by an iterative process first, and then equat®nis solved

directly.
The relation among the Weibull parameters and the moments of the distributipvearby

m=cl(1+1/k) (3.4)

and

v=c?[lF(1+2/k)—T*(1+1/k)] = c*r(1 + 2/k)—m? (3.5)
wherem andv stand for the mean and the variance of wind speed, respectivelyand

the gamma function.

Wind speed is classified on a scale of 1 to 7 and is usually measured at 10 orrS@bwate
ground (table 1). lowa wind speed is ranked i0the U.S. for its wind energy potentfal.

The annual average wind speeds measured 50 meters above groumd ard 5.5-6 m/s at
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the northeastern parts of lowa, and generally increase asoesdrgm the southeastern to
the northwestern parts from 6 m/s to 8 m/s. We choose to examinées in lowa which
already accommodate a large number of wind power plants (e.gottevestern counties)

as well as others to demonstrate the distributional differences of windacesaver space.

Table 1: Wind speed classification

Wind Resources Wind speed Wind power Wind speed Wind power

power potential at10m densityat 10 m at50m density at 50 m
class height (m/s) height (W/m?)  height (m/s) height (W/m?)
1 <4.4 0-100 <5.6 0-200

2 Marginal 4.4-5.1 100-150 5.6-6.4 200-300

3 Fair 5.1-5.6 150-200 6.4-7.0 300-400

4 Good 5.6-6.0 200-250 7.0-7.5 400-500

5 Excellent 6.0-6.4 250-300 7.5-8 500-600

6 Outstanding 6.4-7.0 300-400 8.0-8.8 600-800

7 Superb 7.0-9.4 400-1,000 8.8-11.9 800-2,000

Source: U.S. Department of Energy

The demand for electricity is strongly related to tempeeatuow temperatures increase
electricity demand due to heating appliances while high teahyes increase demand
because of the use of air conditioners. Since heating is fuelethby energy sources and
cooling is almost exclusively by electricity, the highest dedngypically occurs during the
summer months. In figure 11 we exemplify the demand for @#gtin April and July in
two regions in the U.S. during 2007. In both regions demand is roughly 50 peiglesit
and much more volatile in July. Higher variability in electricitlymand is associated with
frequent peak load periods which are typically characterized byehiglectricity prices.
Therefore, one would expect that in these periods wind power witi bigther demand. For

that reason, we focus on the distribution of a typical July to demtenstie spatial Weibull
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densities, means and standard deviations in lowa (table 2). We empldyspeed data

measured at 50 meters above ground.
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Figure 11: Hourly load in 2007 at the Electric Reliability Courdfil Texas (ERCOT) and the
Southwest Power Pool (SPP) which includes the transmissionskengas, Kansas, Louisiana,
Missouri, New Mexico, Oklahoma and Texas.
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Table 2: Estimated July wind speed parameters and moments atcssitexstén lowa, U.S.

Shape Scale

Paramater parameter Mean Std
County City Location k c (m/s) (m/s) (m/s)
Sac Schalar NW 2.61 6.90 6.13 2.53
Pocahantas Palmer NW 2.62 7.16 6.36 2.61
Hancock  Garner N Central 2.60 6.88 6.11 2.53
Carroll Arcadia Central W 2.63 7.09 6.30 2.57
Hamilton Blairsburg Central 2.64 7.08 6.29 2.57
Floyd Charles City NE 2.59 6.40 5.68 2.36
Lee Argyle SE 2.54 5.95 5.28 2.23
Osceola Harris NW 2.64 7.41 6.58 2.68
BuenaVista Storm lake NW 2.59 6.98 6.20 2.57
Worth Joice N Central 2.61 6.96 6.18 2.55
Dickinson Spirit Lake NW 2.63 7.09 6.30 2.57
Greene Jefferson Central 2.58 6.45 5.73 2.38
Allamakee ChurchtownNE 2.52 5.36 4.76 2.02

The average wind speed is in the range of 4.76 to 6.58 (m/s), andrdtaedation is
between 2.02 and 2.68 (m/s). The variation of wind speed at differest csitenot be
compared by the standard deviations since they are estimatekfferent Weibull
distributions. Thus, for this purpose wind speed coefficient of vanativ,, ;) should be

computed. We use equations (3.4) and (3.5) to obtain

Vs =Vv/m = [[(1 +2/k) —T?2(1 + 1/k)]/?/[T?(1 + 1/k)] . (3.6)
It is clear from (3.6) thatv,,; is a function of the shape parameter only. Also, it can be
shown thatcv,,; is a decreasing function kf This result is useful since comparikgf
different Weibull distributions alone can provide a standardized indethéofluctuation of
wind speed. For example, our results show that counties Hamilton sgcebl® have the

highest estimated shape parameters (depicted in column 4pteetéky present the lowest
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wind speed variations as weldi(,s~40.7%). Since our estimates suggest that Osceola
County also has the highest mean, it is the most preferreith $&anms of both average wind
speed and coefficient of variation. We depict the fitted distribubbrwind speed at
Allamakee ¢v,,~42.4%) and Osceola counties to demonstrate the differences in wind
speed distribution over space (figure 12). These two are selsictegl they display the
minimum and maximum values of both Weibull parameters in our saegpectively. The

two fitted distributions are skewed as implied by the magnitudieeo§hape parameters. The
distribution of the northwestern site has higher mean and fatler dampared to the

northeastern site.

Note, however that wind speed distributions by themselves are nmiesuffor evaluating
returns to wind power projects. As we discuss later, the economicpetential of a site is
actually linked more to the usable power rather than its wind speedidition, economic
evaluation of wind potential of a site should not be weighted uniformly aleperiods.
Wind power revenues are subject to the price of electricityedtirne of delivery. On periods
of higher electricity demand, prices tend to be higher as Wedrefore, higher wind speeds

in certain periods are more valuable than in other periods.
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Figure 12: Fitted Weibull pdfs for July wind speed distribagi at 50m height for sites at Allamakee
and Osceola counties, 1A

Next, we examine the month to month variation of wind speed. We oarnyith our
example and focus on the wind variation at Osceola County (tab@uB)estimation shows

that the winter months are windier, peaking in March while summuenths are somewhat
calmer. The windiest month has roughly 30% higher average wind dpeedhie lowest.

July in particular has the second lowest monthly average wind speed, which istemolict

with the elevated electricity demand at that time of the.yHae coefficient of variation of

each month shows non-monotonous trend, peaking in November with 46% and falls below

40% for only a few months in a typical year.
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Table 3: Estimated monthly wind speed parameters and moments atad3oenty, IA at 50m

Shape
parameter
k

January 2.73

February 2.61

March 2.76

April 2.50

May 2.50

June 2.48

July 2.64

August 2.70
September 2.61
October 2.67
November 2.32
December 2.50
Annual 2.44

Wind power density

Scale
parameter
¢ (m/s)
9.07
9.17
9.35
9.37
8.69
8.33
7.41
7.28
8.08
8.85
8.98
9.08
8.68

Mean

(m/s)
8.07
8.15
8.32
8.31
7.71
7.39
6.58
6.47
7.17
7.87
7.96
8.06
7.69

Std

(m/s)

3.19
3.36
3.26
3.55
3.30
3.18
2.68
2.59
2.96
3.18
3.65
3.45
3.36

The instantaneous input-output relation of wind speed and wind power potdetiated by

P,) is characterized by the equation

1
P,(v) = EpAvg

(3.7)

wherep is air density (kg/m3) which depends on altitude and temperature;, @nithe wind

speed that goes through an afe@m?). Notice that wind power is an increasing return to

scale process of wind speed. Theoretically, if one choos$esca windier site holding all

other factors constant, the wind power potential will be eightfold higher.
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Since the density function of wind speed cubed can be repressngweibull function as
well, mean wind power density of an area of sizean be expressed as (see for example,

Jamil 1995):

o)

E(R,) = j P, () f () dv = gpc3F(1 +3/K) . (3.8)
0

Frequently, wind power potential is expressed on a monthly or an dvemsial To arrive at
an approximation of the wind power resourcesmpéover a timeframe of a month or a year

one could simply multiply (3.8) by 730.48 and 8,765.81 respectively.

The mean wind power density represents the potential of wind resauecehosen site.
Figure 13 portrays mean wind power density per unit squared (@€el) in each month at
Osceola County. The required air density data are obtainabldatefowa Energy Center as
well. The estimated figures show that small differencesiimdvgpeeds are translated into
very large deviations in wind power. The month to month wind power pdtemtiges
greatly; from wind classification 2 (marginal) on summer monibsclassification 5

(excellent) on winter months and early spring.
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Figure 13: Month to month mean power density at 50m for Osceola County, 1A

Usable wind power

When it comes to harvesting wind power, the actual energy that caxtraeted by a wind
turbine is limited. First, regardless of technology and turbineSgdethe instantaneous
power that can be extracted from wind is bounded. According to BetzBetz 1926) there
is an upper limit of 59% for power extraction from air flé®vsSecondly, wind turbines

impose mechanical limitations as well.

2 Wind turbines extract energy by capturing wind speEhis suggests that for a turbine to be abledin g
100% efficiency, its rotor should be like a briclliv But in this case it won't spin at all and nimdtic energy
would be converted. On the other hand, if there measotor at all the wind would have passed throwgh no
impact. In both cases the efficiency of the turbmé%.
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The capacity of a wind turbine (denoted by in a given wind speed may be described by

the equation

P.(v) =¢(v) *RP (3.9
where RP is therated powerof the turbine. It is generally the maximum power that a wind
turbine can generatep(v) is a non-linear function describing the turbine efficiency
coefficient. The coefficient measures the rate at whichuttiente extracts energy in different
wind speeds relative to its rated power. The capacity of wind nerid commonly
characterized by a static power curve. To exemplify, wertbesthe operation of a typical
modern turbine rated 1.5 MW. The minimum wind speed at which the turbames st
generating power at is calledit in point For a 1.5 MW turbine, this point is usually in the
range of 3.5-4.0 m/s. Once wind speed is higher than the cut in point; gogenerated
increasingly with wind speed. Thated speeds the speed at which the turbine is intended to
achieve its rated power (i.RP). In our example, power of 1.5 MW is generated when wind
speed is at about 12-14 m/s. At higher speeds, the turbine mainsamated power or
decreases its output gradually, depending on the turbine design andqoowei. When
wind speed exceeds the turbineid out point the generator is shut down to avoid exposing
the turbine to damage. Cut out point for the described turbine maytbe range of 20-25

m/s.

Estimation of power curves are performed based on field measusenfarst, data
measuring wind power output is plotted against wind speed. Then, aiereffi coefficient
functiony (v) € [0,1] is fit to map wind speed into wind power. In doing so one needs to

account for the two truncated ranges correspond to the cut in andtcpoiots. In these
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rangesy = 0 is imposed since no power is generated. At the rated speed ufritne, its

capacity reaches the rated power tius 1.

In figure 14 we depict a power curve of a typical 1.5MW modern turdgaenst the long
averages wind speed distributions of April and July at Osceola catirttgight of 80m
(which is the appropriate hub height of a typical 1.5 MW turbinkeg depicted power curve
was fitted by eye to the power curve of a particular comiaentachine published by the
manufacture (details are provided in appendix 3). The illustratiomifregythe importance
of fitting the right turbine to the wind conditions of the site ingjio®m. The monthly average
wind speed in typical July and April is 7.05 and 8.95 respectively. Nttatein July, it is
not very common for the turbine to run on its rated power. On April, tgapility of that to
happen is higher. The illustration shows that wind conditions in onehmmay be more

suited than in other months for a turbine of this rate.
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Figure 14: lllustration of July and April wind speed distributiab$sceola County, IA and a power
curve of a typical modern 1.5 MW wind turbine

A turbine capacity factor(CF) is the ratio between the average power generated over a

period of time and the rated power of the turbine. More formally, it can be written a

. Iy P(w) f(v)dv
B RP

- j ) f)dv | (3.10)
0

The computation of the capacity factor requires numerical integregchniques. Although
the capacity factor is commonly used as an index to indibateérformance of a wind
turbine, it should be regarded with caution. The fitted power curvengtise to the wind

conditions at the specific site and measurement errors. Theréfe computed capacity
factor of a very same wind turbine may be quite different wheruttiene is sited and its
output is measured at different locations. The anticipated ladsesvind power plant are

referred to as Boss factor which accounts (but not limited) to downtime due to maintenance,
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line losses, physical conditions and land use (building, trees, etopsand a projected

decrease in the turbine’s efficiency over tithe

A recent report by the U.S. Department of Energy (2009) indi¢htdsthe average U.S.
industry capacity factor increased from 22% for projects imstatirior 1998 to 35% for
projects installed in 2007. Moreover, in the best wind resources aladsplants commonly

exceed a 40% capacity factor and in some cases the capacitydasten greater than 50%.

The month to month variation of the computed capacity factor of our 1.GMid¥he at
Osceola County is large (figure 15). For instance, the capacityr attains 40% in a typical
July month and 58% in a typical April month. These estimates dadig adjusted down by

the anticipated loss factor.

The capacity factor is considered to be a good measure fpratiectivity of a wind turbine.
However, its variability over time and space and the factttiehourly price of electricity
fluctuates as well, suggest that more inputs are required intordssess the economic value

of a wind turbine.

> lowa Energy Center suggests using a default loss factor of 12%.
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Figure 15: Monthly numerical capacity factors of a 1.5MW wind turbine sited at Osceola County, IA
(disregarding loss factor).

Regional wind power supply

Estimating the instantaneous distribution of overall wind power suppypower system is
important from various engineering reasons; frequency control, coootreatd operation,
and system reserves. From an economic point of view, the expestatgarding overall
wind power supply may impact trade in futures markets for redégt and therefore

electricity prices.

There are two main approaches to study overall energy flow\iriowh projects in a region.
In the first, the researcher estimates the stochasticenatihe problem by investigating the
spatial correlation of wind speed. In the next stage, wind spadsitransformed into wind
power according to the technicalities of the specific wind turbémegloyed in the analysis.

In the second approach, recorded data of wind power output produced bfarmsds used
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directly in the analysis. The advantage of the first approattteiability to examine the two
stages independently. In doing so, the energy potential in a region may bed@ayarding
to various scenarios of geographical spreads of wind farms. In additie@piioach is not
limited to the specifics of wind turbines in the region in questidrerefore, the researcher
has the flexibility to apply a range of assumptions about theefdtgures of wind energy
conversions. On the downside, the estimation in the first approach reguicesmore data.
Long term records of wind speed data from as many sites asblgosf the region in
guestion are required to account for a spatial trend in wind spesmtsniEhen, simultaneous
wind speed observations from these sites are needed for the spadigling. Moreover,
even if spatial correlation is ignored, extensive wind speed idadtll needed. Since the
relation between wind speed and wind power is non-linear (and trundagekhdwledge of
average wind speeds alone are insufficient. In effect, for wind powmsiderations, full

description of long-run wind speed distributions are required.

Wind spatial correlation

In a pioneering work, Haslett and Raftery (1989) estimated tihealeerage wind energy at
a new site for which only a short run data was available. In daintpsg term records at
twelve meteorological stations in Ireland were utilized. ethsind Raftery introduced an
autoregressive integrated moving average (ARIMA) model forsitece-time process of
wind speed. The model was constructed based on the assumption thatahe erder

moment of the space—time process is constant. Thereforeeasable and can be written as
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a product of the two processes. Particularly, the cross-correlagbmeen every two
locations has been fitted by the function
-Bdij if i=j
n { i (3.11)

whered;; is the distance between the two sitg$), a € [0,1] andf > 0 are parameters.

The empirical curve displays a strong spatial correlatiigure 16). The correlation of the
daily average wind speed was above 0.5 even when reaching a raftgekoh between two
locations in Ireland. The correlation level depends on the time iht@hiah wind speeds
observations are being averaged on. The study by Haslett andyRedie based on daily
average wind speeds, thus is not detailed enough for the purpose iofywaind power.
Since the price of electricity fluctuates greatly durimg day as well, hourly wind speed data

iS more suitable.
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Figure 16: Empirical spatial correlation function of wind speed infcel&ource: Haslett and Raftery
(1989)
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At the second stage of the estimation, Haslett and Rafpgmp@mated wind power output.
The energy conversion ratio was oversimplified by assuming #rargting wind power is
proportion to wind power potential. Assuming that, the authors overestirtiegtqubtential

output of wind turbines (i.e. ignoring zero output at wind speeds whidbwaee than the cut

in point and higher than the cut out point).

Cellura, et al. (2008) employed hourly data to study the spatrad speed patterns for
energy planning in Sicily. Specific Weibull density functions evétted for each wind site
and a complete geostatistics analysis was performed. Thes$tadyg how wind resources in
a region may be evaluated taking into account the spatial natwiechfHowever, Cellura,

et al. did not consider wind power production in their study.

Holttinen (2005) studied the hourly variation of wind power production dyreRttal output
data from the Nordic countries was utilized to examine windggneariability in a large
geographical scale. The cross-correlation of wind power productionfited by the
correlation function (3.11) for sites in an area where the maximstande between sites is
2,000 km (figure 17). The spatial correlation of wind power productios feand to be
strong for sites which are just a few hundred km apart, above 0.35®which are 500 km
apart and below 0.1 when the distance is about 1,200 km or more. Sindenp@Qg)ed
very similar results studying cross-correlation between 2,088 pawind power sites in the
UK. The maximum distance between sites in that study was 1,2Gh#&mat this range the
correlation was also slightly under 0.1. Also depicted in figure 18xtarpolation of spatial

correlation functions fitted in studying wind energy in thehgetand (Gibescu, Brand and
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Kling 2009; Landberg, et al. 1997), and a spatial correlation funatieal for a spread of

4,500 km over locatinos in the EU (Giebel 2000).

0.9
0.8
0.7
0.6 Giebel 2000

0.5
AN |
0.4 Gibescu et al. 2009
0.3 \\
0.2 Holttinen 2005,
01 \\ Landbergetal. 1997

0 500 1,000 1,500 2,000

correlation coefficient

distance (km)

Figure 17: Fitted cross correlation functions of wind power outpupwsistudies

Focken, et al. (2002) studied the effect of spatial distributionidl iarms on forecasting
regional wind power. They considered wind power output data of about 9,000 wircesur
in Germany in 1999. Their study shows that the magnitude of thetien of forecasting
error depends only weakly on the number of wind sites and is maielyrdeed by the size
of the region. Similar to the other studies, the spatial cowalati wind power was fitted by
equation (3.11). In doing so, Focken, et al. were able to weigh the predicticovement of

aggregate wind power proposed by wind farms diversification. The stutdpared regions
of diameter size of 370 km and 730 km. Interestingly, in both casekctwa error

improved and reached a minimum level at around 50 turbines. A laugdsen of turbines

did not enhance prediction precision. Normalizing a single siggligiton error to 1,
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prediction error in the smaller region was 0.63 while the laiggion demonstrated error of

size 0.53.

I ntroduction to a wind-integrated electricity market

Once wind capacity had been installed, the production of wind power i mbidice
variable. Similar to electricity demand it is a stochastacess which may be predicted with
some precision level. For that reason it is sensible to definexferted amount that needs
to be generated by conventional power units astdoad The distribution of the net load
depends on the correlation between electricity demand and aggregate wind powetiqamo
Wind power output may move in the same direction as the system load in some wégiens
against it in others. However, there is no reason foshbe-term fluctuations of wind power
and system load to be related (Holttinen 2005; Wan and Liao 2006hott-term

fluctuations are indeed uncorrelated, expected net load may be expressed as

W oo
f j(X — W) fx(X|X) fr (W|W)dxdw (3.12)
0 0

where W is the hourly aggregate regional wind power outptt,is the rated regional
capacity, W is the prediction of aggregate wind power afjgl(-) is the conditional

probability distribution function of aggregate wind power.

Integration of wind power capacity into deregulated electricigrkets has two primary
effects. While producers of conventional power face convex cost fundi@nsyarginal cost

of wind power is close to zero. Therefore, the regional margetl af producing overall
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load is higher than the marginal cost of producing net load. Sepretdtiction of load minus
available wind power has different statistical features th@&nprediction of overall load
because it also includes errors in wind power predictions. The faskaking correct
predictions and balancing load under these terms is more complextsmmlves stochastic
processes of both demand and supply. Wan and Liao (2006) examine theintthegehort
term variation of load due to installation of wind power capaditytheir study 74 MW of
wind energy (rated power) had been added to a conventional generaticitycapa,400
MW. This addition has the potential to account for 6% of electrib@yand in peak load
periods at the particular region of study. It was shown that at this pemetate the increase
in standard deviation of the net load compare to overall load is matige of 3% in August
to 18% in June. Looking at a six month average (June to November) an ovaedlse of

8% in the standard deviation was computed.

Recent experience of the Electric Reliability Council ekds (ERCOT) may emphasize the
complexity of predicting net o484 On Tuesday evening, February"28008 an emergency
situation was announced when a sharp decline in wind energy productioesinTexas
occurred at the same time that electricity demand soared daestalden decrease in
temperature. At that time, ERCOT electricity demand inccé&sen 31,200 MW to a peak
of 35,612 MW. Wind power production fell from more than 1,700 MW to only 300 MW.
During that event some industrial electricity was curtailed taerdemergency situation was

ended in three hours (which is a sufficient time to activate most gas turbines).

** ERCOT manages a region with the largest installed wind power capacity in the U.S. At the first quarter of
2008 Texas had about 5,300 MW wind power capacity installed, and by the end of 2008 this number jumped
t0 7,118 MW.
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In a wind-integrated electricity market, firms need to condiderconditional distribution of
the net load in making their financial decisions. Optimizagimblems should be formulated
with respect to the distribution of the spot price, which in turn, isvelrfrom the

distribution of net load given the forecasts. These optimization prolaesrte focus of our

next chapter.
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Chapter 4: Theoretical framework for modeling wind-integrated electricity

markets

Introduction

In this chapter we extend the electricity market model to accéamitthe economic
environment of markets with significant amount of wind power capagityind-integrated
electricity market model allows us to examine and compareotlieome and welfare
distribution subject to various assumptions regarding the path forpewer expansion. In
particular, we expand our model to analyze two key economic gasstiith regard to wind
penetration rate. First, if the electric industry experiencagket power, the question who
invests in wind capacity may be important for welfare distrdsutand for identifying
potential losses caused by a non-competitive behavior. Secondapjeicgf diversification
of wind power plants determines the probability distribution of aggregate winelr sapply.

Hence, one could ask what effect wind power diversification has on markebequmili

We examine the situation where wind power is utilized fullyth®y system operator in real-
time whenever it is available. This is similar to the currghiation in most deregulated
electricity markets. In these markets wind power is not be@ded regularly in the day-
ahead markets therefore it is not being priced directly. ldst@ad power producers receive

the settled spot price which is determined by the price of duginmal MW of electricity
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produced by the marginal fossil fuel generator. That way, theuti@es all available wind

power in real-time before dispatching power from fossil fuel resources.

The results we derive in this chapter show that even thoughpeindr is not priced directly
it may have a substantial impact on how electricity from fdgsl generators is priced. This
is particularly true when market power exists in eleityrionarkets. In addition, the
theoretical framework presented in this chapter is developed vdtindance to the objective
of examining the impact of wind power diversification. We attend tnestion after

introducing the required numerical methodology in chapter 5.

Setup
Wind power output is not a decision variable and it is not traded imé#nket for forward
contracts. Therefore, the residual power that needs to be generatedIdydbgeinerators in

real-time is a pure probabilistic matter. We denote this amouretdsad®

Net load is exogenous to electricity markets but wind power regeamgenot. Since these
revenues are contingent on the settled spot price, wind power prodiuscgdsalways prefer
a higher spot price. For this reason, the presence of market @maethe ability to
manipulate the spot price make ownership of wind power capacity fokenderstanding

how electricity is priced in a wind-integrated market.

% We assume that the net load is always positives iSlreasonable since a wind penetration rateehitftan in
the range of 20% to 30% (depending on the regias)rhliability and other engineering constraintscihhave
not been solved yet.
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We start with some useful notation: recall th#tis the hourly aggregate regional wind

power output and’ denotes the regional rated wind power capacity. Effectivelyjsttise
upper bound for aggregate wind power output in a region at a specifidgenetration rate
(i.e. total wind power nameplate capacity in the region). The girediof regional wind
power at the time of trading forwards is denotedthyand the conditional distribution of the
prediction of regional wind power is given by the conditional probabdistribution

function f, (W |W).

Similar to the base model presented in chapter 2 (of no wind pou&fEs may choose to
lock in (aggregatelyX units of electricity by purchasing forward contracts forghee Px.
But unlike the base model, the residual amount of energy that h&ttsto balance in real
time accounts for the availability of wind power, thakis W — Xz. Whether it is positive
or negative, this amount would be settled against the spot pricegdtive, a contract for
differences is put into effect). After the spot market iardd LSEs would make a monetary

transfer of sizé I/ to the owners of wind power capacity.

In the following, we solve for the outcome of the two-settleingrocess (i.e. forwards and
spot markets) assuming wind energy is fully utilized by théegy®perator in real-time. We
compare two cases: wind power capacity is owned by IB&srfot wind capacifyor by an
independent entity or entities which do not take part in electmnc#tgkets otherwisefrfnge
wind capacity. Historically, investments in wind capacity need to be slibesil to become
competitive therefore the distribution of revenues generated by pomcbr is a policy
guestion. We do not analyze in this study the long run incentives tstimvevind power

capacity. Therefore, the two cases may be viewed as the autmoenfavorable policy or
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mandates for IPPs or other entities to invest in wind power tgphiext, we give details
about the optimization problems in each ownership case and the ask@gatkbrium

outcomes.

Cournot wind capacity

Start by assuming that wind power capacity is part of thergdon asset portfolio owned
and operated by IPP firms. We keep the symmetric structuhe @iroblem by assuming that
wind power capacity is uniformly distributed among IPPs. Yet, etedalizations of wind
power output to vary at the firm level. This in turn yields asymmerofits. An IPP firm
that has higher (lower) than average wind power output will have prefitch are higher

(lower) than average.

Next, we need to acknowledge the difference in the implicatiomsraf power forecasts at
the aggregate and at the firm level. First, at the aggregadd brediction of wind power
supply provides information about the distribution of the spot price. Fagusn the
symmetric solution, the knowledge of aggregate wind power is suffimeioretell the spot
price. That is because forward positions are identical afiross and competitive behavior
in the spot market implies identical marginal costs. Thereforglas to the base model, the
spot price stands for the marginal cost of electricity prodocliom conventional energy
resources. Second, at the firm level, wind power prediction héps Imaking more
informed decisions about expected revenues in real-time. More &gouportance of firm

level prediction is discussed when IPP’s optimization problem is detailed.
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Since the knowledge of firm level output is not important for the ewwluii the spot price
we can characterize the LSEs problem in terms of aggregai@ power. The LSEs
maximization problem given the predictions of load and aggregatepower at the time of

trading forwards is

N
— J 7 =n 15 | — J
N = me}xE T op | X, z Xg , W | =[Pr — Prlxg
XF — i
n=1n#*j

+
O\§"
S—

=0

|
e
>
M=
=
s
<

n=1n#*j
(4.1)
X-W ; ~ .
X( N —xé)fX(X|X)fW(W|W)dXdW
W oo N
+jj Pz — P X, Z Xp,W
0o w n=1n#j

w " _
X NfX(X|X) fw(W|W)axdw .

The first two terms are the familiar expressions descripaypffs from trading electricity in
forward and spot markets. The third term is the financial pagoftifilizing wind power in

real-time. Substituting for the expected spot price and collecting teenget
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N = [Pz — Pplx}
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N
a _ .
_MS X—-W-— Z X} —x7,

n=1n+#j

)

X (% - x,],) fr(X[X)dx }fW(W|W)dW :

Taking the derivative of the objective function with respect to tloesie variable and with

further algebraic steps we get the following FOC

Pr = E[Ps()] + (4.3)

W o
& [ [ oo (x| 2) fu(wl)axaw .
0 Xpt+w

LSEs willingness to pay for the marginal forward contraftects the cost they expect to
face in order to purchase the marginal MW for their end-consuaig¢he spot market. This
cost accounts for the expected spot price plus the expected penatiyt fecheduling the
marginal unit for delivery in advance (associated with turning hen rharginal power
generator). The optimality condition is integrated over all possibleagans of wind power
output. Substituting for the deterministic case whgrg¥ = 0|W) = 1, this FOC coincides

with the demand curve of the base model of no wind power. In this geEndemand curves
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developed in this section may be seen as a generalization of thrashuieed by the base

model in chapter 2.

As noted earlier, in order to analyze the IPPs problem one showldrador both aggregate
and a firm’s prediction of wind power output. The knowledge of both h&Pps to make
more informed decisions in the forwards market. That is becaaselBP’s revenues from
wind power depend on the distribution of its own output and the distnibatithe spot price

which is in turn depends on the distribution of aggregate wind power.

The prediction of wind power output for the delivery period in questionrateti wind
power capacity (fixed over all periods) of each IPP firm areotkal by w and w
respectively. We denote the conditional probability distribution functionviafl power
output of each IPP bgj, (w|w) with meary,, and variance. Therefore the conditional pdf

of the regional aggregate outpm(Wll/T/) has mearMyu,, and notice that the variance is
betweenM o2 andM?c2. The lower bound corresponds to the case of uncorrelated wind and

the upper bound to the case of a fully correlated wind power output.

If there is an aggregate smoothing effect it improves the pi@dicf the spot price but does
not offer any benefit for the prediction at the firm level outputer&fore, in maximizing
profits, each wind power producer needs to consider the statistissosin expected output
as well as the expected aggregate regional output. Finadyjoint conditional probability

distribution function of wind power output at the firm level and the ousippube aggregate

level is denoted by}, (w, W|W).

Each IPP’s expected profits are given by
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M
X, Z q,t!‘,W)

M = max E (n,‘pp
ar

M
o o 4.4
PS<X, Z q£"+q}.W>><(q‘—qé) (44)

m=1m#i

—C(q% qb)| i (X|X) fr (WIW)dXdW

i

where the last term stands for the IPPs’ expected revenoes dwning wind power

co M
f P, (X, Z ar + qk, W) X w fx(X|X) fow(w, WIW)dXdwd

w m=1m=i

capacity.

ExpressM with respect to the two states of the world (i.e. conventiorgdaity traded in

advance is sufficient or insufficient to meet realized net load)
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M
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W WS e, AR HAEW
+ f f f P(X, W) x w fx(X|X) fow (W, WIW )dXdwdW
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+ff f ( Z qF + dk, )
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X wfx (X|X) fo.w (W, WIW)dXdwdW .

Taking the first derivative
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oM _0Pr() ;
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Writing explicitly the derivatives of the spot price and the cost function

oM _0Pr() ;

+ P,
aqF aqu} F F()

M -m i
¥ L1ime=i, AF tAptW

- f f () £ (X[X) fr (WIW)dXdW
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Employing symmetry and collecting terms
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The first derivative of the forward price with respect to quantity is

[o9)

-
Py (- sf. 1 N _
rC) _ —%(1 + N)f j f(X|X) f(W|W)dXaw . (4.10)
0

aqs

M B ,
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Solving for the symmetric Cournot-Nash equilibrium whefe= g2 = --- = g¥ = g gives

the following optimality condition

|78
Pe) = BOT+ap (14 ] ] Fe(X|R) fur (W|W)dXdw
0 +W

—a, (1 - %)fw f (@ — a0 e (X|%) fu (WIW)dXdW (4.11)

0 Xp+W

_|_

X[R

_ff:/ _foWfX(Xl)?)fw,W(W:W|W)dXdeW,
0w

Xp+W
It can be verified that the SOC holds in the same manimeexkemplified in the base model
(appendix 2).

Next, by equating aggregate inverse demand with aggregate inverse supply shevcahat

equilibrium is characterized by the aggregate number of forwardracts that solves

(numerically) the following equation

. (MN+M—N) Iy Fe oy X5 (X|R) fur (W|W)dxaw
F— W (00 -~ —~
MN M4 [ L S (K18) for (WIW)dXaw

a (MN -1\:”1\\; + 1) (.12

f f fX +WWfX(X|X)wa(W W|W)dXdwdw

N S ow (X |X) fi (WIW)dXdW
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Substituting this result back into the inverse demand (or inverse $dppbtion we get the

equilibrium forward price

Pp(Xp)

W
A N+1 o ~
= E[RO] +.5 (MN T 1)! ) fWXfX(X|X) fw(W|W)dxdw w1

ww Ie)
+ G j f f W fx (X|R) fuw (w, WIW)dXdwdW .
0 w Xp+W

Notice that the first term describing the equilibrium numbdontards traded is identical to
the expression describing the equilibrium number in the base model replarcing the

statistical properties of net load with these of overallidabhis observation is also true for
the first two terms describing the equilibrium forward pric&he additional terms in the

RHS of (4.12) and (4.13) are attributed to the fact that IPPs own wind power gapacit

Revenues from wind power output are determined by the realized dpet jvhen

scheduling power for delivery in advance (i.e. forward contracting expected spot price
decreases due to the availability of more power generation itap&kerefore, a higher
volume of trade in forwards yields a lower expected spot pricelandlly reduction in the
expected revenues for wind power output. IPPs internalize the lifleagyeen the revenues

from the number of forward contracts they sell and the expeeteshues from wind power

% Recall that the equilibrium number of forward gants in the base model is described by

yr = (MNHMoN Iy XFx(X1D)ax
F (MN+M+1) f;}fx(xp?)dx
2" The equilibrium forward price in the base modealéscribed by

Pr(X7) = EIPS()] + 2 () [ X fi(X[R)dx

MN+M+1
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output. Therefore, IPPs’ incentive to withhold capacity in the forwaradket in this case is
higher than in the case which they do not own wind power capaaiysequently, the
change in the forward premium in this case represents more ubtm jshift from the
statistical attributes of overall load to these of net Idaalsb accounts for the ability of IPPs

to exercise excess market power when they are the owners of wind powélycapac

Fringe wind capacity

In this section we look at the situation where the owners of winegipoapacity do not have
market power or any flow of income from electricity maskether than compensation for
their wind power output. That is to say that wind power is supfliedompetitive fringe
firms. This is a meaningful case because it includes then@ra whereby a government
agency or several small private firms invest in wind power ¢gpaicd no strategic behavior

is involved.

LSEs’ maximization problem in this case is similar to theecevhereby wind capacity is
owned by IPPs. The fact that the recipient of wind power paymeatsother entity does not
change LSEs behavior. Therefore, the demand curve is identical poetheus case, where

IPPs own wind capacity.

IPPs revenues in the case of fringe capacity are based ountfhé of conventional power

exclusively. Therefore the maximization problem is
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(4.14)

—C(q% qb) | fix(X|X) fw (WIW)dXdW .

ExpressM with respect to the two states of the world
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Taking the first derivative
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Writing explicitly the derivatives of the spot price and the cost function
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Employing symmetry and collecting terms
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The FOC is
Pe()
Pp() = E[R()] = ———ar
0qp
w o (4.19)
—a(i-g)x[ [ @ - AR wI)axaw.
0 2:nM’L=1,m:ati‘711:)'1"'q}i“"'vl/
Writing explicitly the IPPs’ FOC and imposing clearing market condition
W
Pe(Xp) = BIPel + a3 (14 5 j f - (X18) fio (W|W)dxaw
0 Xpt+w
(4.20)

sM v ) )
- f f(X‘XF)fX(Xlx)fw(WIW)dXdW.
0

X+W

Equating aggregate inverse demand and inverse supply, the equilibrium rafridrevard

contracts in this case is described by

L (MN + M- N) y 3 by XF(X12) oo (W |W)dxaw
-

ot . — (4.21)
MN M+ T) TR (W) dxaw

and the forward price is

www.manharaa.com




115

Pe(Xp) = E[P5()]

(4.22)

as( N+1

+MN MN+M+1

W o
)[ [ xR s wim)axaw .
0 Xp+w
Both expressions are identical to these of the base model resjyegthen taking into
account the statistics of net load instead of overall load. Beeandepower is owned by a
competitive entity, no additional market power is given to IPPs arsl tthei resemblance
between the equilibrium expressions in this case and these lohdsbemodel. In the case of
fringe capacity, IPPs’ incentive to maintain a high spot psclwer than in the case that
they are the owners of wind capacity. As a result, more folsvare being traded which
brings relatively more conventional capacity online in advance.iithign, lowers expected

marginal cost and the expected spot price.

Chapter summary

In this chapter we expanded the theoretical framework to allevmodeling of wind-
integrated electricity markets. In doing so, we accounted fodebeease in the employment
of conventional energy resources due to the availability of wind poaecity. Also, we
modeled risk management behavior in the forwards market, which anglgtmfluenced by
the new uncertainty introduced from the supply side of the market. i@lytiaal work
provides transparent, traceable and robust results for equilibriumuresasf electricity
markets with wind energy. The question who invests in wind power cagamportant as

the electric industry structure has an effect on the amount of camva&ngeneration
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capacity that is traded in advance, thereby impacts equilibrilaaspand premiums as well.
Our main result is that IPPs have a higher incentive to withhgldcdsg in the forwards
market in the case which they are the owners of wind powecitap@onsequently, in this
case prices of electricity in both spot and forward marketshegher compared to the case

where wind power capacity is owned by fringe firms.

Employing high frequency historical data, one can calibratentioidel and obtain testable
empirical results. Since the research question is about the é&xgpamsion of wind capacity,
the required data for this purpose does not exist yet. Insteade®e to introduce the
appropriate numerical methodology to simulate the possible pathsidmpaiver expansion.

This is the objective of the next chapter.
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Chapter 5: A numerical method for simulating the conditional distribution
of regional wind power output for modeling trade of short-term electricity

forwards

Introduction

Information about future availability of overall wind energy at plo&er system is valuable
for both technical and economic reasons. In this chapter we aresitetkiin simulating the
information that is accessible to firms for the purpose of modéhieiy behavior in futures
markets for spot power. To carry out this task we need to look ahtheterm distributional
patterns of wind power forecasting because that is the imeffor the operation of the day-
ahead markets. By that time, low resolution outputs from numenieather prediction
models (NWP), as well as downscaling tools (which make use dfigathyconditions to
obtain higher resolution forecasting) are already accounted for. Théstical models take
these predictions as inputs for shorter forecasting horizons, waitte iforecasting time

framework we are interested in simulating in this chapter.

The initial step is attaining wind speed forecasts at theitmsatvhere wind power capacity
is installed. Yet, simulating wind speed forecasts is not easgube one should account for
wind speed variability and the need to predict wind speeds atratelarations
simultaneously. In addition, errors in wind speed forecasts tramslaterrors in wind power

forecasting, which are translated into large errors in energopubuthese forecasting errors
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may be substantial because of the non-linear nature of the power Eor all these reasons

wind speed forecasts is an important part of the simulations.

In the following we propose a novel methodology for the simulatiohthe uncertainty
regarding the availability of wind power in the day-ahead mafkat that purpose, we use
the joint distribution of wind speed and wind speed forecasting, ttweiditional and
marginal probability density functions, and the specifications wofirel power curve. To
model aggregate regional wind power, we make use of a methopréigised by Iman and

Conover (1982) to impose spatial wind correlation in the simulated region.

Simulating wind speed for ecasts at one location

Consider the joint probability distribution function (pdf) of wind speed asldoat-term wind
speed forecast (e.g. day-ahead) for a particular location. Déi®edt byf,, » (w, w) where
w is wind speed and is wind speed forecast. By the laws of probability this may itbew

as

fww W, W) = fu e (W|W) fi (W) (5.1)
wheref,,»(w|w) is the conditional pdf of wind speed given wind speed forecastf;Amt)

is the marginal pdf of wind speed forecast. Then, the marginal pdf of wind speeenidyi

52
fo ) = [ furo @@ fo (@) ©2

Next, assume a particular (Weibull) pdf(w) for wind speed forecast. The assumption

regarding the particular conditional pdf to employ in the experinsendt important for the
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purpose of implementing the proposed method. Therefore, in line with thegefitom the
relevant literature (e.g. Giebel 2001, Landberg 1994 and Lange 200&3swme that this
conditional pdf is normally distributed and centered at the foredagalue. (That is,
forecasts are unbiased). Also, we need to account for the pronounesastedasticity in
wind speeds. To be precise, we assume the variance of wind fgpeeast errors is non-

decreasing in the magnitude of the forecasted value. Formally

w|w~N(w,a%(W)) (5.3)

wheredas?/dw > 0

Then, we generate values of wind speed and wind speed forecastars/ ahéhe following

Monte-Carlo simulation:

1. Make draws directly from the pd§ (v).
2. Use (5.3) to construct a numerical conditional pdf of wind sgggdw|w). Notice that
during this process negative values of wind speed may appear. We show later how to

avoid this problem when we parameterize the varianedof

3. Use (5.2) to integrate over wind speed forecasts and compute the marginal pdf of wind

speedf,, (w).
4. Adjust the parameters ¢, (W) and repeat the process till the resemblance between the
simulatedf,, (w) and the desired wind speed pdf for the experiment is within an

acceptable range. (More details are provided in the example below).
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Simulating wind power forecasts at one location

We assume that all turbines in a given location experience e wand speed. Therefore,
wind power output at this location increases linearly in the nufterbines installed. This
is a reasonable simplification because the correlation in wiredspihin large wind farms

is likely very high. Considerations of the aerodynamics intemadbetween turbines for
maximizing power production in wind farms are discussed elsewbkeaye Mosetti, Poloni

and Diviacco 1994).
We proceed with the Monte Carlo simulation as follows:

5. Specify a power curve of a modern wind turbine to be employed in the experiment.

6. Use the turbine’s power curve to translate the draws of wind speed forecadtsawdgo
of wind power output of each turbine.

7. Multiply wind power output of a single turbine by the number of turbines installed to

arrive at the aggregate output in the simulated location.

Simulating wind power forecast errorsat onelocation
8. Draw fromf,,» (w|w) once again to specify a particular wind speed realization in each

simulated delivery period.
9. Use wind speed realization to compute realized wind power output in each simulated
period using the power curve and the number of wind turbines installed at the simulate

location.
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10.Integrate over wind power realizations to compute numerical capacity &dctor
employed wind turbine.
11.Calculate prediction error in each realization to compute rabaalute error (MAE) of

wind power forecast across all delivery periods.

Calibration and verification
1. The performance of wind power forecasting systems is mehgeeerally by MAE.

This is computed as

N
1
MAE = NZIActuali — Forecast;]| . (5.4)
i=1

This statistic is usually reported as a percentage of iteatdlled wind capacity or as a
percentage of actual energy produced. Adjust the parameteriaftiéGiv) such that the
numerical MAE of wind power forecast in the experiment and theirezal MAE

reported by the literature are the same.

2. Verify that the numerical capacity factor of the simulateddmurbine matches the
reports on the empirical performance of the assumed commeinturbine employed

in the experiment (capacity factor is discussed in chapter 3).
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An example of wind power simulation at one location

Start by assuming the following pdf for the short-term wind speed fof&cast

W~Wei(9.35,2.76) . (5.5)

The first and second moments of this distribution are 8.33 and 10.68 respectively.

We parameterizer?(v) = o2w? and let52=0.05 (illustrated in figure 18} Setting the
variance that way serves two purposes; first, it is realistiassume that the variance
increases monotonously in the magnitude of wind speed forecast, secahdl
parameterization produces very small errors in the case th&irdoasted value is low and
by that diminishes the likelihood of the algorithm to generatetiveg@alues of wind speed

while constructing the conditional pdf.

! . . . . )
o] 5 10 15 20 25 30
forecasted wind speed

Figure 18: Variance of the conditional wind speed in the experiment

The numerical marginal pdfs of wind speed and wind speed forecaspesmerated by 5,000

draws and depicted in figure 19.

% See table 3, this is the distribution of wind spee fitted at Osceola County, IA in a typical Marc
* The assumptiod2=0.05 is made only for illustration purposes as thdint. However, we use this particular
value in the numerical experiment in chapter 6enegate a desired MAE.
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Distribution of wind speed forecast
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Figure 19: Numerical marginal pdf of wind speed forecast (top) and syeed (bottom)

Table 4: Moments and parameters of the numerical marginal gidivind speed and wind speed
forecast

Fitted Weibull Fitted Weibull
Mean | Variance

=

scale parameter | shape paramete|

Wind speed forecast  8.33 10.68 9.35 2.76

Wind speed 8.32 14.67 9.40 2.31

The illustration and the point estimates (table 4) show that asgumind speed forecast is
distributed Weibull provide a good fit for a Weibull distribution ohdispeed. The means of

the pdfs are approximately the same. This result is expecieel we employ an unbiased
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wind speed forecast in the experiment. However, the variande aissumed pdf for wind
speed forecast is smaller than the variance of the pdf for wiret spéis is due to the
introduction of the disturbance term associated with forecastiog. €ur goal is to find
values for the parameters of the Weibull function describing the astgcwhich will
generate the desired moments of wind speed for the experinaite fhat wind speed and
wind speed forecast have the same mean, thus the two parametees\Vééibull pdf for
wind speed forecasts should be a pair that generates the meanesited wind speed pdf.
Since we have two parameters there is infinite number of pretsqualify. Recall that the

mean value of a random variable distributed Weibull is

m=cl(1+1/k) (5.6)
where ¢ and k are the scale and shape parameters respectivelyl'@nds the gamma

function.

The total differential is

om om (5.7)
dm = Edc + de .

By linear approximation, we may write

Am = (1 + 1/k)Ac — ck=2I"(1 + 1/k)Ak . (5.8)

Since wind speed forecasting in unbiased, we imporg#e= 0 and get the following

expression
Ac ¢ (5.9)
A ﬁlp(l +1/k)
r'a+i/x) . . . . .
where (1 + 1/k) = T S the Psi function (also known as thgamma function
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Equation (5.9) provides an expression for the relation between the pawWgeibiull
parameters that approximate the same mean as that of thellpaiairk andc. As long as

we changec andk with accordance to condition (5.9) we know that the mean of the two
marginal distributions remains approximately the same. Thesteptis to pick a pair that
provides us with the desired variance for the target pdf of windispéds is not a difficult
task, which may be accomplished by a standard numerical seafshique. For example, a
simple computation shows that if we wanted to generate a pdf ofspe®t which is similar

to the estimated March hourly wind speed distribution in Osceola Cdeqty5.5), we

should start the Monte Carlo simulation by assumird/ei(9.26,3.51).

To convert simulated values of wind speed to wind power output a povwer af a modern
1.5 MW turbine is used. This curve is depicted in chapter 3 (figureALd)ind turbine of
this rate is chosen as it is a fairly large machine whiclagpropriate for regions with
excellent conditions of wind resources (wind speed between 7.5 andd& &Usn height).
Larger commercial machines which are suited for outstanding (8-8)8amsuperb (>8.8
m/s) wind conditions may be considered as well. However, study orettedration rate of
wind power capacity requires that the employed turbine size in the experhoaid be with
accordance to the availability of spatial wind power resourcegioRs of outstanding and
superb wind conditions in the U.S. are scarce and many of them goorate any certainty
of delivering stable large flow of wind power during most months &da large

geographical dispersion.

Next, we want to examine how the magnitude of wind speed fora@uhstnces the

distribution of wind power forecast (figure 20). While the conditionds$ gd wind speed in
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all cases are Gaussian by assumption, the shape of the congitbdlwind power is far
from being Gaussian. It varies by the magnitude of the foretastkie and has no
recognizable form. The reason for that is the nonlinear nature opdwer curve. For
example, wind power output is truncated on both sides. Namely, for peiitbd#&ind speed
forecasts from the tails of the distribution, the probabilitgerfo wind power output is high.
If the forecasted value is sufficiently low, it is expected that winédmeuld not exceed the
cut-in point and therefore it most likely that no power would be generadtad is described
in figure 20 by the case that the wind speed forecast is 2Likésvise, a high forecasted
value entails higher probability that the turbine may attaioutsoff point, and cease power
generation to protect itself from damage. That is depictedyuref 20 in the case of wind
speed forecast of 25 m/s. Recall that 25 m/s isctheff speedtherefore it is shown that
about half of the time the turbine generates its rated pawekemathe rest nothing. For wind
speeds between tloait- in point and 14 m/s which is thated-speedwind speed at which
the turbine generates its rated power) the power curve is convent) wiplies that small
deviations in wind speed in this segment yields large asynmusviations of wind power.
Those are reflected by the depicted graphs for wind speed ftzretds 8, 12 and 16 m/s in

figure 20.

Our results show that the conditional pdfs of wind power forecastiog @&e not Gaussian.
However, integrating out the forecasts, the unconditional distributidiore€asting error
seems like a dense normal distribution (figure 21). This result is in line wighas@mpirical

studies that show that wind power prediction errors may be myess(at least) loosely by a
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Gaussian distribution (see Blatchford and Zack 2004, Loutan and Hagd07s Madsen et

al. 2004, and Pinson and Kariniotakis 2094).

For modeling trading decisions, it is the conditional distributiomioid power forecasting
errors that is important. That is because financial consequences of ttadisigns in futures

markets are drawn from the distribution of wind power given a short-term farecas

Averaging over the 5,000 draws (periods) in the experiment, we convmagoower plants’

capacity factor of 51% and mean absolute error as percentage of installety el %.

%0 Blatchford and Zack (2004) and Loutan and Hawki2807) studied the predictions of the central wind
forecasting system in California ISO. Pinson andidatkais (2004) presented forecast errors foasecstudy
of a single wind farm in Ireland. Finally, Madseth a. (2004) studied the performances of more th@n
prediction systems in Europe as part of a projéthie@European Union Commission.
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Figure 20: Conditional wind speed, the associated conditional wind powerutistiiband the
distributions of wind power forecasting error given wind speed foreca{bpB, 12, 16 and 25 m/s
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Figure 21: The unconditional distribution of wind power forecasting etrone location (kW)

Aggregate regional wind power output
In the following we consider a study region composed of several gite locations where
there is a short-term wind speed forecast available at eaafiolocThe goal is to simulate

wind speed forecasts and realizations that are consistencwitblated forecasts and the

spatial nature of wind speed.
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In general, the forecasting error of wind power output from skw#es is lower than
forecasting errors from a single site. How fast and to wktgnt these errors are reduced
with the addition of wind capacity depends primarily on the siz¢he region and how
spatially correlated wind is in the region. The geographicatiloligion of wind farms in a

region determines the distribution of regional wind power output.

For the purpose of imposing spatial correlation we employ a methodasantroduced by

Iman and Conover (IC) in 1982. The method is used in a large variappbations where

there is a need to generate correlated random numbers (searigple Brus and Jansen
2004, Hart, Hayes and Babcock 2006, Maia and Neto 2004, and Wu and Tsang 2004). The
technique is distribution free, preserves the exact form of #rginal distributions on the

input variables and simple to use. The theoretical basis of theetl@ahis that independent
random numbers drawn from independent marginal distributions can bd sortemply

with any desired rank correlation matrix.

Let A be ak by n matrix corresponded t& draws fromn independent marginal
distributions. IfC is a target correlation matrix fer then we know that sincé is positive
definite and symmetric, there exists a lower triangularim#& such thatPP’ = C and AP’

has the target correlation mattix This is the theoretical basis for the IC method.

The objective is to find a rank correlation matkkthat is sufficiently close to the desired
correlation matrixC. In order to do so, the IC method requires definireg@e matrix For
the score matrix, Iman and Conover (1982) suggest using ranks, random noriataisder
van der Waerden scores. We adopt the latter method which isyadptothe original paper.

Let R be ak byn score matrix where each of its columns comprise from a random rttig of
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van der Waerden scores. That {$)a= d)‘l(i/(N + 1)) fori =1..N, where®™ ! is the
inverse function of the standard normal distribution. Then, find a loveegularP, which is
associated with the target correlation mafrixfwo common ways to compuieare through
Cholesky factorization and singular value decomposition. The scdrex iRais multiplied
by P’ to transform its columns such that the transformed matrix, dihgt*, has a rank

correlationM which is close t@'.

To improve the similarity between the matridésandC, Iman and Conover (1982) suggests
proceeding as follows. The difference betwednand C is explained partially byR not
having a sample correlation equal to the identity matriXhe goal is to decrease the
variance of the transformation matrix in order to reduce the dissityi For that purpose, a
matrix S should be found such th8T'S’ = C whereT is the sample correlation &f First,
compute a lower triangula@ such thaf’ = QQ’. Then, recall thaf = PP’, so we can
write SQQ’S’ = PP’. From that we know tha§Q = P orS = PQ~1. Therefore, the matrix
denoted byR; = RS’ has the exact correlation mattixand a rank correlatiaf*, which is

closer toC thanM is.

While the implementation of the IC method for our purpose is straigtdafd, we need to
explain how to derive the matrix to simulate spatial correlation in our application. Start, by
defining a study region for the experiment. In theory, the shaptheofstudy region is
relatively unimportant as long as it is not too small to captoeeftull range of spatial
variation in the underlying process (Diggle and Ribeiro 2007)L et a square lattice which

is divided inton by n symmetric locations
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Ll,l cee Ll,n (510)

Denote byA the side length of each location. Notice thais also the Euclidean distance

between the centers of any two orthogonal nearest neighbor locdiiengse, v2A is the

Euclidean distance between the centers of any two diagonal nearest neaghbions).

The next step is to specify the stochastic nature of the speadiedss. For example, if wind
speed experiences the same distribution at all locations, and spatiation depends only
on the distance between locations then the process is stationary. <ebnweind speed may
experience spatial trend. For instance, differences in the magnbe explained by the
coordinates of the location on the study region. Another example festabonarity is due

to the existence of directional effects on the correlation sireicNotice that our theoretical
framework does not put any restrictions on the structure of thélspatrelation to be

employed in the numerical experiment. Spatial correlation majeberibed by any function
of the Euclidean distance, the coordinatesLofr other factors affecting the? by n?

correlation matrixC.

Next, we maken? draws from the pdf,(w) in each simulation. These are the (unsorted)
wind speed forecasts at locations. Each draw is used as row entries in a matrix denoted

asA. Suppose we makedraws in the experimem,s dimensions aré& byn?.

Once matricesA and C are defined, the IC method can be applied for imposing spatial
correlation among local wind speed forecasts. The imposition ofakgatirelation on the

forecasts is reasonable because forecasting systems run mstdution models as first step
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and therefore use predictions of regional scale events as inpate péaj/sical downscaling

tools™ are being implemented.

After we generate local wind speed forecasts, we proceedheitkilonte Carlo simulation in
each location as elucidated earlier. That way, we obtain &sxhhggregate conditional pdfs
of the short-term wind power forecasting. Those are valuable fas tilsey will be used as

inputs for modeling traders’ decision making in the next chapter.

An example of simulating spatially correlated wind

Generally, wind speed should be considered as a non-stationary spategspbecause of
the physical conditions which are never entirely homogenous over aagbagd region.
However, since our experiment does not relate to a specific reggowpuld not want to put
restrictions at this stage on the analysis. As argued eddreapplied purposes, one can
impose any specific spatial wind structure to this framewothout adding complexity to

the analysis.

Assuming stationarity, the Euclidean distances alone are suffith construct the desired
correlation matrixC. We carry on our example with an exponential correlation functnme s
this is the one that is commonly chosen to describe wind spatralation (see references in

chapter 3). Ignoring a nugget effect, the correlation function is

3 Physical downscaling tools refer to the utilizatmfrhigh resolution spatial data such as topogragptd/
roughness to refine forecasting at the site level.
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T'i]' = e_Bdif (511)
whered;; is the Euclidean distance between any two locaticarsdj, and the value of the

parametep (known as theharacteristic distangeneeds to be calibrated.

Letn = 10 andA= 100 km, with a region of size 1,000 km?, which is divided into 100 wind
locations. The literature regarding wind spatial correlatiomuge limited and the few
empirical studies reviewed earlier, are about wind statisticEuropean countries (see
chapter 3). In line with this literature we get= 0.002. The spatial correlation of wind speed

for the experiment is illustrated in figure 22.
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Figure 22: Wind spatial correlation in the experiment

Making use of the spatial correlation function while accountimghe coordinates of wind
locations we compute the correlation matfixThat is the correlation to be imposed while

simulating wind speed forecasts in the region study.
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The Monte Carlo experiment consists of 5,000 draws. We draw indepgntierall wind
locations from the pdf of wind speed forecast that is used in presi@msple (eq. 5.5). That
gives us a matriXd of 5000 by 100 random draws. To generate the score niatvise
randomize the van der Waerden scores in each column. The requiredti@angular
matricesP andQ are computed by Cholesky factorizations. Deriving the matnoted by
Ry we get the exact correlation matéixand a rank correlatiodf*. Finally, each column of
A is resorted according to the ranks in the columnBzofDoing so, we generate rank
correlation M* among the columns of while preserving the marginal distributions of the

forecasts in each wind location.
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Table 5: Wind speed forecasts: target correlation (toplilabted correlation of wind speed forecast
(center) and simulated correlation of wind speed realization (bottom)

"'L31 L32 L33 L34 L35 L36 L37 L38 L39 L40 L41
0.8187 |0.6703|0.5488 |0.4493 |0.3679 | 0.3012 | 0.2466 |0.2019 | 0.1653 |0.8187
Ly |1 0.8062 |0.6602|0.5389 |0.4464 |0.3591 |0.2972 |0.2411 |0.1924 |0.1597 |0.8069
0.5895 |0.4779|0.4090 |0.3240 |0.2835 |0.2251 |0.1762 |0.1423 |0.0982 |0.6004
La 0.8187|0.6703 |0.5488 |0.4493 |0.3679 | 0.3012 |0.2466 |0.2019 |0.7536
1 0.8099| 0.6577 |0.5391 |0.4346 |0.3585 |0.2899 |0.2326 [0.1921 |0.7396
0.5886/ 0.4984 |0.3859 |0.3174 |0.2620 |0.2135 |0.1731 [0.1368 |0.5431
Las 0.8187 |0.6703 |0.5488 |0.4493 |0.3679 |0.3012 |0.2466 |0.6394
1 0.8076 |0.6565 |0.5327 |0.4365 |0.3530 |0.2853 [0.2313 |0.6250
0.5862 |0.4712 |0.4057 [0.3278 |0.2615 |0.2059 [0.1760 |0.4555
Las 0.8187 |0.6703 | 0.5488 | 0.4493 |0.3679 |0.3012 |0.5313
1 0.8065 |0.6519 |0.5353 | 0.4280 |0.3467 |0.2852 |0.5207
0.6040 |0.5056 |0.3937 |0.3425 |0.2726 [0.2319 |0.4020
L 0.8187 | 0.6703 | 0.5488 | 0.4493 | 0.3679 |0.4384
1 0.8032 | 0.6533 | 0.5254 | 0.4259 | 0.3523 | 0.4350
0.5931 | 0.4790 | 0.3980 |0.3258 |0.2669 |0.3160
Lo 0.8187 | 0.6703 |0.5488 | 0.4493 |0.3607
1 0.8080 | 0.6465 |0.5204 |0.4284 |0.3487
0.5987 | 0.4896 |0.3889 |0.3270 |0.2820
L3y 0.8187 |0.6703 |0.5488 |0.2962
1 0.7995 |0.6421 [0.5262 |0.2873
0.5986 |0.4886 |0.4084 |0.2214
Lg 0.8187 | 0.6703 |0.2431
1 0.8029 | 0.6550 |0.2362
0.5953 | 0.4896 |0.1759
Lo 0.8187 |0.1994
1 0.8085 [0.1879
0.6067 |0.1371
L1o 0.1635
1 0.1538
0.1158

Ly )
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Table 6: Simulated wind power correlation; forecasts (top) atidatans (bottom)

L31 L32 L33 L34 L35 L36 L37 L38 L39 L40 L41
] 0.7863| 0.6297 0.4980 0.4013 0.3340| 0.2785| 0.2186| 0.1807 0.157§ 0.7852
La 0.5707| 0.4504 0.3835 0.2996 0.2556 | 0.2003 | 0.1566| 0.1379 0.0999 0.5800
Lay ) 0.7835 0.6189 0.4959 0.4120 | 0.3430| 0.2674| 0.2271] 0.192§ 0.7171
0.5476 0.4572 0.3484 0.2900 | 0.2431| 0.1978| 0.1691 0.1384 0.5094
Las ) 0.7834 0.6199 0.5045| 0.4161| 0.3321| 0.2784 0.2334 0.5993
0.5731 0.4454 0.3751| 0.3052| 0.2294| 0.205§ 0.1737 0.4342
L ) 0.7759 0.6272| 0.5087 | 0.4063| 0.3359 0.2722 0.4849
0.5742 0.4767 | 0.3735| 0.3045| 0.2584 0.2145 0.3759
Las . 0.7849 | 0.6238| 0.5013| 0.415] 0.3361 0.3992
0.5671| 0.4510| 0.3681| 0.3065 0.2496 0.3009
Lo . 0.7869| 0.6339| 05152 0.4204 0.3340
0.5666 | 0.4625| 0.3760 0.3101 0.2720
Ls; ] 0.7884| 0.6319 0.5117 0.2793
0.5734| 0.4653 0.393 0.2219
Lsg . 0.7871] 0.6257 0.2218
0.5759 0.461§ 0.1593
Lo . 0.7840 0.1771
0.5823 0.1393
Lao . 0.1507
0.1099

Ly 1
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The top entry in each cell in table 5 shows the target ctaelanatrix C for (randomly

depicted) locations 31 to 41. For instance, looking at the first rose@dow the correlation
dies slowly as we go from left to right (or west to ewith regard to the study regidn. The

correlation of locations 31 and 41 is high again since they are dooatéop of each other
in L. The second entry in each cell of the table is the correlatoget by imposing rank
correlation on wind speed forecasts. The difference between et &nd the simulated
correlations of forecasts shows that the IC method provides &ptagiproximation for the
desired spatial correlation. The third entry in each cell is the aboelbetween the marginal
pdfs of local wind speed. This correlation is lower than the correlation of thesboteecause
we impose the spatial correlation on the forecasts. As explagdidrethis is realistic

because forecasting systems make predictions that are daawihie forecasting of regional

scale events.

In table 6 we depict the results for wind power spatial cdroels. The relation between the
correlations of wind power forecast and wind power realizationsimilar to the
corresponding relation between the correlations of wind speed. Howiherto the non-
linearity of the conversion rate of the power curve the spatiaklations of wind power

forecasts and realizations are lower than these of wind speed respectively

Finally, we look at the conditional distribution of aggregate regianadl power output. This
distribution depends on the spatial smoothing effect in the region. ®indestatistics and
other characteristics of a particular region are spetica which may vary greatly, we
employ a broader approach in our analysis. The illustrations inthed@articular spatial

correlation assumed so far in the experiment (figure 22) andotwndary cases. One is a
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fully diversified windcase which refers to a zero correlation of wind power inlavel of
output. It may describe a region which is sufficiently large dcommodate wind power
capacity so it is not influenced by spatial correlation. Tlo®rse is anundiversified wind
case. This is parallel to scaling up the capacity of aesimwghd farm since in this case the

region does not offer any spatial smoothing effects.

While most likely no real-world region complies with eithertbé& two boundary cases,
observing the range of results spanned by these two is pralttiadvides an indication of
the importance of diversifying wind power production and demonstrategmiba&cts of

spatial correlation that can provide insights into particular regions.

Geographical diversification of wind power may reduce the producwfitvind turbines if
less windy areas are developed. In our simulations we do not acooarpdtential decrease
in a capacity factor due to wind diversification. Doing so, weaste to observe all possible
outcomes with no prior restrictions. More applied work ought to take fd#utr into
consideration but we do not impose it. In this sense the fully di\egtsifind case represent

the most efficient expansion path possible for regional wind capacity.

We assume a single 1.5 MW wind turbine in every location, thus ted ragional wind
capacity in our illustration is 150 MW. The marginal pdf of wind pofeeecast is depicted
in figure 23. Looking at the illustrated distributions it is clézat spatial correlation has a
significant impact on the statistical properties of aggregag®mmal wind power. In the case
that wind is uncorrelated the forecast is normally distribued.the particular correlation
imposed in the experiment (figure 22) we see that a smoothiegt ¢dikes place but not to

the extent that the marginal distribution becomes Gaussian. Ufatiic the variance of the
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forecast is much higher than the previous case. Finally, if therredoes not offer any
smoothing effects the distribution of the forecast is very uneven. To be ptheisigelihood

of getting values that are not from the tails of the distribuisorelatively small. Because
wind is fully correlated, the distribution in this case refethe relatively high probabilities

of local wind speed being below the cut in point or above the turbine’s rated speed.

Looking at the conditional distribution of wind power we get an intergsesult. In figure
24 we depict selected conditional pdfs to exemplify low, intermediatd high wind power
forecasts (recall that we generate 5,000 conditional pdfs iexgperiment). While all three
distributions are Gaussian-like, it seems that using the wind poaee implied by the
forecasted values of wind speed introduces bias in wind power fongcdshis is especially
true in the cases of low and high forecasted values. A foractdlsé case of wind speed
between the extremes is more dependable since the transforofasioeed to power is less
likely to be truncated by the power curve at this range. Whemtegrate over all forecats
we find that transforming expected wind speed to wind power generatdatively small
prediction bias (the average error in the experiment is about 3Wwhith is less than 2.5%
of installed capacity). This result is due the fact that wind pawéput is truncated from

both sides.
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Figure 23: Marginal pdfs of wind power forecast; no corretafieft), some correlation (center) and
full correlation (right)
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Figure 24: Conditional pdf of wind power, imposing some correlatiow; (left), intermediate
(center) and high wind power forecasts (right)

Chapter summary

In this chapter, we develop a numerical methodology to simulate tleetainty regarding
future wind power availability at the time of trading shortrteelectricity forwards. The
methodology is relatively simple and independent of any speatiiatof wind speed

conditions, spatial correlation, wind energy conversion, and wind powetrgtoe rate.
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Thus, it can accommodate a large array of assumptions regardipgthisefor wind power
expansion. The IC method, which is commonly applied to construct rarddatmmn among
random variables, is used in this study for the purpose of inducinglspatelation. Since
geographical regions are very different and no concrete wind spédschvailable to us at

this time, the method is exemplified avoiding any subjective assumptions.

The conditional distribution of wind power derived from wind speed foreaastse location
has no identifiable form. Moreover, the technical nature of the powere makes it
necessary to examine every wind speed forecast individually mecammse wind speed
forecasts are associated with higher wind power variabhigy tothers. In periods of very
low wind speeds it is almost certain that the turbines wileggie zero output. Forecasts that
are higher than the turbine’s rated speed but not too close tattoéf point are very likely
to generate the rated power. Other values of wind speed forecastsatg peculiar
conditional distributions of wind power as well. This result is conse@lentmeans that in
some trading periods traders face more uncertainties than irs.otNe show that spatial
correlation is a main factor determining the uncertainty in agtgegad power forecasting.
The distribution of aggregate output may be U-shaped in the case ofaothing effects,
normal in the case of highly correlated wind or with no conforming simaje case of some
degree of spatial correlation. Therefore, the particular demsifieaggregate wind power
created by a short-term wind forecasting must be accounted forodeling electricity
markets with wind power capacity. The numerical work developed inchapter, coupled
with the theoretical economic framework introduced earlier, camplee required state of

knowledge to model wind-integrated electricity markets.
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Chapter 6: Modeling equilibrium in wind-integrated electricity markets

Introduction

The theoretical framework and the numerical methodology developpevious chapters
enable the analysis of various scenarios of wind power integratiothid chapter we
generate and discuss results which are based on a particulaf assumptions. The
assumptions regarding the structure of the electric industry addaleathe ones we used
earlier for the illustration of the base model in chapter 2. Aptions regarding the features
of the study region, wind speed statistics, wind power technolog)yorecasting quality are
drawn from the related literature, recent technical reportsrendralysis of wind speed data

in lowa.

Since the specifics of electricity markets in differeagions vary greatly, the results
presented in this chapter should not be seen as a general guideliathbutin example of
how to go about modeling equilibrium outcomes in the new economic enviroomeimtd-
integrated electricity markets. A more applied work should usetki@oretical framework
while employing the characteristics of a particular regroguestion. For instance, assuming
a particular industry structure refines the modeling of mas&eter in the associated region.
Second, the cost parameters of generating power in the modekecealiltrated to fit a
particular regional supply curve. Third, for concrete predictions it witeeired to evaluate

empirically and employ the specifics of wind resources as tivelprecision of the central
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forecasting system in the region in question. While the theorétisabwork developed here
is flexible to accommodate various applied questions regarding pavwer integration, we
focus in our simulations on two key questions. The first is the impatbwnership of wind
power capacity has on market equilibrium. The second is what wabel power

diversification plays on equilibrium prices.

Simulation setup

Overall load

The integration of wind power is our main interest therefore weéhg forecasted value of
overall load across all simulations. This allows us to controVdoiations in the predictions
of the model caused by the variations of overall load. The conditiatiadfpoverall load
employed in the experimentX4X~N(10,000,500?) i.e. the expected load for the modeled
delivery period is 10,000 MW with standard deviation of 5%. This amounts eean
absolute error (MAE) of 4% of total power when forecasting dvlrad at the day-ahead

market.

Industry structure

There are five IPP firms and five LSE firms in the study regionM.e= N = 5.
Production costs

The cost parameters of generating poweroare 1 anda, = 2. It is useful to compute the

cost of generating power in our experiment before wind powerredinted. In particular,
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we look at the marginal cost in the event that load is fully éedxy forwards contracts. This
is relevant because it stands for the most efficient productioense of one hour power
supply in the simulated economy. Employing the cost function and stmyynthe expected

marginal cost is 20 $/MWh and total short-run generation costs of each IPP is $40,000.
Wind power

A careful modeling of the expansion of wind power capacity demandshthairobability
distribution function of aggregate wind power output in the experiment waold
overestimate the potential of wind power in the study region. As nadioet rate increases it
is only expected that less windy areas would be developed. Foretsin we choose a
location in center lowa to generate a representative wind spééat jpadir study region. It is
shown in chapter 3 that wind power resources in lowa increasesagoes North-West
therefore the fitted pdf of wind speed in center lowa is a Blenshoice for modeling wind
power potential. More specifically, we estimate wind speed pdieating, where a large
wind farm has been constructed in portions of Story and Hardin Countlesvan When
fully developed, this wind farm is planned to have the potential ofrgéng 150 MWH2
Making use of data published by lowa Energy Center we estithatannual hourly pdf of
wind speed at hub height of 80 m at Zearingva$Vei(8.28,2.41). The mean and the

standard deviation of this pdf is 7.34 and 3.25 m/s respectively (depicted in figure 25).

In order to simulate the marginal pdf of wind speed in Zearimgumexperiment we make

use of the numerical methodology developed in chapter 5. Recall tthahoso we need to

32 At this time, bilateral contracts are signed téivée 30 MWh to the city of Ames and 6 MWh to lo\&ate
University. The purchase represents roughly 15% a0&6 shares of overall electricity consumption
respectively.
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parameterize the conditional pdf of wind Spe&W~N(W,U(W)) and to solve for the
parameters of the marginal pdf of wind speed forecast, whiawrimngenerates the desired

marginal pdf of wind speed.

To construct the conditional pdf of wind speed we need to look at thisipreof modern
wind forecasting systems. Nowadays, wind power forecasting madelable to provide
unbiased forecasts (Madsen, et al. 2004). On the other hand, MAE atnahsite location
for a prediction horizon of day-ahead is still substantial. Foramst, for wind farms
participating in California ISO’s central forecasting systeMAE is 17.5% of installed
capacity (Blatchford and Zack 2004). MAE in different locatian&urope is about 13% of
installed capacity (Madsen, et al. 2004). The most recent repaifalde at this time
indicates 10%-12% MAE of installed capacity for a single(8taith 2008). Considering the
particularities employed in these studies, e.g. wind farms temyyolgeographical

characteristics of wind and more the results do not diverge dramatically.

Taking these figures into consideration, we adtw~N(w,0.05w?) and generate the
marginal pdf of local wind speed by a particular marginal pdfiofl speed forecasts, which
isw~Wei(8.24,2.93). Recall that by employing the Iman-Conover method we aretable
impose any degree of spatial correlation while preservingthet enarginal pdf of wind
speed forecast across all simulations. Therefore, we arecabitaw sample of wind speed
forecasts only once and use the very same one in all simulafibasway, we avoid the

intrinsic variation related to the sampling of wind speed forecasts.

% The central forecasting system Participating Inteent Resources Program (PIRP) was created by
California 1SO_in 2003.
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The chosen wind turbine in the experiment is similar to the 1.5tiMWines installed in the
wind farm in Zearing. The particular power curve of the employadhme is portrayed in
figure 25. Finally, wind turbine output in the experiment are discouoyea loss factor of
12%, which is the figure proposed by the lowa Energy Center (sgaec 3 for details).
Taking the particular wind conditions and the loss factor into consioleréhe capacity
factor of the illustrated turbine in the experiment is 36.74%. Theouted MAE at the day-

ahead for a single wind site in our simulations is 14%.

Study region and spatial correlation

We simulate a square lattice which is similar to the ocenglified in chapter 5: a grid of 10
by 10 wind site locations with side length of 100 km each tm farregion study of 1,000
kmz. Spatial correlation is assumed to be stationary and modeledexp@nential function
of the Euclidian distance between locations (see eq. 5.11). We wntulee cases of wind
spatial correlation: no correlation, some degree of positive cooreland full correlation.
This is accomplished by setting the value of the paramie{dre characteristic distange

appropriately and imposing rank correlation accordingly.

Regional wind power capacity and wind power penetration rate

Rated wind capacity specifies the upper bound for the hourly output of werdyein the
study region. The expansion of wind power capacity is performedeirexperiment by a
symmetric increase in the number of wind turbines in each locatigrarticular, we focused
on the following figures: 5, 10, and 20 turbines in each location whictesmond to

simulating wind capacity that account for 7.5%, 15%, and 30% of thected load. We

www.manaraa.com



148

illustrate and discuss in details only the results for the @a3@% since our key findings can

be observed when simulating wind capacity at this scale.

Wind power penetration rates defined here as the share of forecasted wind power of the

expected load in a particular delivery period. Notice that theahshare may be higher than

the rated capacity if realized load is lower than expedfedkalized load is higher than

expected, wind penetration rate is always lower than the rated capacity.

General

In line with the empirical studies discussed in chapter 3, wanssshat the hourly

distributions of wind power and load are uncorrelated. All the numemsailts consist of

500 draws of 100 local wind speed forecasts (i.e. 500 delivery peroaisjlitional pdfs of

load and local wind speed for each delivery period consist of 500 draws as well.
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Figure 25: Fitted annual hourly wind speed pdf in Zearing, 1A ancptiveer curve of a 1.5 MW

turbine employed in the experiment
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Results

The following are the results of a computational experiment ¢éxamine the market
equilibrium which arises from modeling regional rated wind povegracity of 3,000 MW
(i.e. wind power capacity accounts for 30% of the expected loadyl|Reat for presentation
purposes, we denote wind power capacity in the case that it is dyr@Ps as £ournot

capacityand in the case that wind is owned by competitive firmsfasge capacity

The results by ownership of wind capacity and for the threesaatswind diversification are
depicted in figure 26-28. It is shown that in all three casewiod diversification fewer
contracts are being traded if wind capacity is owned by IP&skihg at the illustration for
the case of undiversified wind (figure 26, top), the two semédlect similar trend. The only
difference is that the Cournot capacity case demonstrabightarseduction in the equilibrium
number of forwards before a sharp increase takes place. Thesmérgapens at the region
where net load approaches the volume of power hedged by forwardactan®his is
because the probability of starting up generators in real-timeeakss fast in wind
penetration rate in this region. For the fringe case, at about lifébp&netration rate the
number of forwards hit a saturation point. For the Cournot case thisipoegdched only at
about 23% wind penetration rate. The saturation points are related fiacthibat at these
wind penetration rates the expected forward premiums are exhagspedtively (discussed

further below).

When we look at the case that wind experiences some spatidatiorr€figure 26, center)

the saturation point in the case of fringe capacity is reachadoatt 21% wind penetration
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rate. On the other hand, for the Cournot capacity the number of forwardotheeached a
saturation point in the experiment. Moreover, the increase in the nuhfwwards in this
case is less obvious than in the case of the fringe capaaigilyfiif there is no spatial
correlation there is a noticeable increase in the sharewéards for the fringe capacity case
but for the Cournot capacity case there is no clear trend (figéyebottom). The fully
diversified case enjoys smoothing effects hence is lesy likgjenerate extreme realizations
of regional wind power output. The 500 wind speed forecasts at 100 winldcgt®ns in
the experiment are translated into a relatively narrow rasfg®.1% to 13.3% wind
penetration rate. As a result, there is not much variability irvéhene of trade in forwards

contracts in both cases of ownership.
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Figure 26: Forecasted wind power penetration rate and the chimevards of expected load; full
correlation (top) some correlation (middle) and zero correlation (bottom)
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Figure 27: Forecasted wind power penetration rate and expectegramotfull correlation (top)
some correlation (middle) and zero correlation (bottom)
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The graphs in figures 27-28 depict the prices associated witutdngities presented in the
graphs in figure 26 respectively. We plot forecasted wind perwtredte against expected
spot price (figure 27) and against expected forward premiwguréi28). Starting with the

spot price, the linear curves in the graphs are fitted to thesttre relationship between the
expected spot price and the expected wind penetration rate ddeinothe equations as
wind). In periods that forecasted wind penetration rate is zero trexed spot price is 27.71
$/MWh. The difference between this price and the marginal cost & MWh computed

earlier is explained by the fact that the higher figure spoeds to the actual forwards

positions taken in equilibrium.

The trend in the spot price caused by wind penetration rate issieitar across all three
levels of wind diversification: first, the expected spot pricaeises in wind penetration rate
rapidly since the availability of wind energy reduces the margostlaf generating power in
the region. In our illustration, an increase of 1% in wind penetratite causes a decrease of
about 0.6 $/MWh in the expected spot price. Second, the expected spdd prgteer in the
case of Cournot capacity than in the case of the fringe capaetiyuse the number of
forwards traded is higher in the latter. The coefficients ok price equations imply that
the price is more responsive to wind penetration rate in the afafinge capacity. This
means that the spot price decreases in the share of wind pategrifahe owners of wind
power capacity behaves competitively. In our example, integratingatiweind penetration
rates the expected spot price is about 3% higher in the c&®uafiot capacity compare to

the case of fringe capacity. That is true for all three casesndfdwersification.
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The role of spatial correlation can be examined by looking arahge spanned by the
expected spot price in each case of wind diversification. Whédeatverage expected spot
price is relatively comparable across all three casescdeéficient of variation varies
greatly; it is 0.02 for the case of fully diversified wind and f@2the case of undiversified
wind. Our result suggests that wind diversification is a sicgnifi factor in modeling the
variance of the expected spot price in the day-ahead market. Shaspecially true
considering the fact that we control for forecasted load andsed¢he same marginal pdf of

local wind speed in all three cases of wind spatial correlation in our expérime

Premiums for electricity forward contracts are depictedgaré 28. The expected premium
before the integration of wind power is 5.58% and diverge greattywadtds. First, at
relatively low wind penetration rates we observe a premiuneaser across all cases of
ownership and wind diversification. Premiums for the Cournot capa@tiaeger than these
under fringe capacity for all three levels of wind divecsifion. In particular, the maximum
premiums for each ownership case are 8.6% and 7.1% respectivelg @@ucenter). The
difference in premiums becomes noticeable at about 10% wind peretiaie and exceeds

a 5% gap at about 18.5% penetration rate for the cases of correlated wind.

When the number of forwards traded becomes sufficiently high, therfbpvige converges
to the expected spot price. This can be observed at the top grapgiurm 28. When that
happens the marginal forward contract provides no added value irntaige On the other
hand, in the case of fully diversified wind there is an interior swiutor the number of
forwards even when simulating 30% wind power capacity because rbgizations of

aggregate wind power are very unlikely (figure 28, bottom). For#aaion, in this case IPPs
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are more certain regarding the outcome of withholding capacigubediigh premiums are

guaranteed with higher probability.

Two main factors impact the change in electricity forwaehpums due to an expansion of
wind power capacity. These are the change in the probabilitytieines realizations and the
fact that IPPs compete for a smaller share of residual demandth&ratcertainty regarding
the availability of wind power preserves high prices becausthencase of low wind
additional generators would be turned on, driving spot price up. Second;aifebidity of
wind power shifts production level downward, therefore at some pbibedomes less

profitable to withhold capacity.

This increase in premiums takes place until wind power shaegge Enough to diminish
IPPs ability to manipulate market prices. When this takes ptame forwards are being
traded (see figure 26) and the forward premium changes directiotaatsddeclining (figure
28). In the case of no spatial correlation the uncertainty introduced by windtigelgl small

because aggregate wind forecasts are mapped into a small raexgeeofed premium. On
the other hand, for some degree of wind correlation the expeateuuon is sparse and

depends on the aggregation of a particular set of local wind sites forgcastin

Owner ship of wind power capacity, generation costs and welfare distribution
We seek to examine differences in outcomes for the case ohwhlPs own wind power
capacity and the case that wind capacity is owned by fringes. The two outcomes of

interest are the costs of power generation and IPPs praiits fon-wind power generation
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units. We motivate the direct comparisons of equilibrium outcomes sacases on two
grounds. First, the decision to invest in wind power capacity immibeel is predetermined
thereby seen as a sunk ¢bsflso, the addition of ancillary services associated with the
variability in wind power supply is administrated by the systenraipe and supplied by
generators which do not take part in the markets for spot pdwerefore, investments and
other costs related to the expansion of wind power capacity should not affect ourisompa
Second, the demand for electricity in real-time is inelasiitdoes not respond to changes in
prices. Therefore, the change in expenditure is the only parametared for measuring
changes in consumer surplus. Thus, we relate to the first outcomtermaflst as measuring
how much the economy pays for generating power while the second siatits ¢hanges in

welfare distribution in electricity markets due to the integration of wind poajgacity.

For the cases that wind is correlated, the difference in ts¢ af generating power
demonstrates a parabolic trend (figure 29, top and center). Tinik&lso reflects how IPPs’
ability to exercise market power changes in wind penetratibe. IPPs’ market power
initially rises due to the increase in LSES’ financial résid then decreases rapidly where
generators compete for a smaller share to be produced byctmsientional units. The
average excess generation cost in the case of IPPs ownershipla$ Wi48% and 0.75% for
the undiversified wind and for some degree of wind correlation, regplctif wind is

uncorrelated the range for forecasted wind penetration ratéwsdie 11% and 14% and the

3 Recent global trend of setting mandates along witious government financial supports for renewabl
energy made wind power production viable. A modeéhweestments should take into consideration thoe thaat
wind power capacity expansion is paid partly byszoners.
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average excess cost is 0.90% compare to the fringe capacityTba@se seemingly minor

deviations may be substantial when considering energy efficiency in a fegpalea

Looking at IPPs’ profits from non-wind power generation units theidifices between the
two cases of wind power ownership may be remarkable (figurerB@)average difference
in the expected profits is 18.58%, 18.08% and 16.88% for full correlation, cometation
and zero wind correlation, respectively. In addition, the volatilitthefdifference in profits
is very high if wind is undiversified and relatively dense in theeaat fully diversified wind.
If wind is correlated it is more likely that available wind powell account for a larger
portion of regional power supply. When this happens, IPPs profits in seetitat they own
wind power capacity may be 40% above the fringe capacity. ddme reason for that is the
following: at a relatively high penetration rate the forwardrpten approaches zero in the
fringe capacity case while it is still high in the Cournot cépatase. In periods when the
expected share of wind power is above 20%, the difference dexrie@asénd penetration

rate due to the decrease in IPPs ability to exercise market powerrantjgs

Lastly, we performed further simulations to examine the sengitofi our results to the
possibility that the cost of generating power is higher thaonasd in our experiments.
When we employr; = 3 (instead of 2) in the simulations the results are scaled uprisiee
they do not change much (figures 31-32). In this experiment, the aostsctricity in the
case of Cournot capacity are higher by 0.73% to 1.30%, subject to wingifitbetion
compare to the fringe capacity case. The difference in IP&fgspis on average about
18.23% to 22.42% higher in the Cournot capacity case, subject to wind doagisifi For

periods where forecast approaches 20% wind penetration rate, thert#Bsin the case
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that IPPs own wind capacity may be more than 60% higher tharasleeof a fringe capacity

(figure 32, center). Similar to previous results, this gap dseeat higher forecasted wind

penetration rate.
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Chapter summary

Our simulations predict a large impact of wind power expansion omguated electricity
markets. Our results depend on assumptions regarding ownership of wind qapaeity
and geographical diversification of wind power, but some model pi@uscare consistent
through all scenarios. First, as wind penetration rate increassstantial decrease in
electricity spot price is expected. The parameters emgplmyeur experiment imply that the
decrease in the spot price due to wind power penetration ratédesriatio of two to one (e.g.
at 10% wind penetration rate we estimate about 20% decrease erptheted spot price).
Notice however that this decrease is not translated intoiaareise in consumer welfare. In
fact, the expansion of wind power requires investments in wind cppactt additional
ancillary service, which we do not model as we take the decisi@xpand wind power
capacity as a predetermined policy in our short-run model. Secorfthdwbat the forward
premium increases in penetration rate due to the intermitteuntenat wind power supply.
However, when wind energy reaches a considerable share of regional popply the
forward premium starts to decline dramatically. This is becatismme point net load is

sufficiently small thus it is less profitable for IPPs to withhold cagacit

When we examine the role of wind diversification we see thasiti@othing effect in the
region determines the range of possible realizations for thetexpspot price, the number
of forward contracts and the predictability of the forward premiuRerhaps the most
significant result with regard to wind spatial correlatioreisted to the notion that if wind is

diversified (completely uncorrelated) it is with relativebyv probability that aggregate wind
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power supply meets its regional rated capacity. Consequentidugiion levels from
conventional sources of energy almost never falls to the ranges WlPBs compete more
aggressively in forward markets. Therefore, when wind power is diedisthe model
predicts that IPPs profits from their non-wind power genera@$igher than in the case of
undiversified wind. Looking at the case where IPPs own wind poweacitgpthese
conclusions are even stronger. In this case it is in producerséshtey withhold more
conventional generation capacity compared to the case when they davmetind power
capacity. As a result, in this case less power is tradetbmaard contracts, expected spot
price is higher and positive premiums sustain even when wind powemasdor more than
20% of electricity consumption in expectations. Moreover, since dwtarsified wind it is
almost for certain that wind power will never account for mér@nt15% of electricity
consumption, the profits for IPPs in this case are substantialkgiiban the case that wind
power in owned by competitive firms or if wind is spatiallyretated. Our example shows
excess profits for IPPs in the range of up to 40% when they own windr mapacity
compare to the case that wind capacity is owned by competitivs. fIn addition, we
estimate expected losses of energy resources in the regiaramnige of 0.5%-0.9% (subject
to wind diversification) if IPPs are the owners of wind power cépa€inally, a sensitivity
analysis show that if the cost of starting up generators ehihan assumed in our base
case experiment the differences in IPPs profits and losseiseofly resources between the

two cases of ownership are even more substantial.
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Chapter 7: General conclusions

The overall objective of this dissertation is to develop a theorétamaework for analyzing
deregulated electricity markets with wind energy. This isvaht since the state of
knowledge for modeling electricity markets in insufficient éor purpose. While doing so,
we are able to propose three main contributions. The first is theduction of a novel
equilibrium approach for modeling deregulated electricity mark&ts develop a double-
sided auction model that explains for the first time, to the bé&stur knowledge, the
coexistence of forward premiums and spot market mark-ups. That ssgnificant
contribution since the two have been explained so far separately, by two aopfincideling
approaches. The body of literature explaining forward premiumsedban the assumptions
of perfect competition and risk aversion. The main downside of this agprse that electric
industries are concentrated by nature therefore it overlooks @bteratiket failure caused by
market power. In contrast, the expected outcome of taking an oligopoly modasiogeh is
spot market mark-ups. This is explained by producers’ incentiwgittthold generation
capacity. The drawback of this approach is the partiabsgmtation of the demand side in
electricity markets, in particular, a lack of distinction betweeal-time load and the demand
for forwards at the day-ahead market. Therefore, although this appasaciints for

exercising market power it does not relate to the existence of forwarduprem

The fact that both mark-ups and forward premiums are well documantbe empirical

literature implies that the state of knowledge regarding tragpelectricity markets is
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incomplete. Our approach relies on two additional features Hasgrithe reality of
deregulated electricity markets. First, the supply curve oftraedidg is dynamic due to
ramping costs; frequent start-ups and shut-downs of generatoeadacthe costs of
generating power. Therefore, it is an important aspect ofrigigy pricing. Second, adequate
regulation of the power system requires that scheduling powdutime delivery relies on
designated generators and their locations. This makes the marlsdtoftiterm forwards
illiquid since traders cannot make commitment to supply future pawéhne day-ahead
market and secure the required amount only in the spot market. Wehsdtdwy accounting
for these fundamental elements of electricity markets oord¢heal framework is capable of
modeling oligopolistic competition, spot prices which are higher tharmarginal costs of
generating power and the existence of positive premiums in taxjpes. Moreover, we
show that when we disregard ramping costs the predictions of our cmdeide with the
outcome that one would expect to see under perfect competition ansstimepéion of risk

neutrality.

Secondly, we expand the theoretical framework to account for the ewmmomic
environment of deregulated electricity markets with wind power. ifttegration of
intermittent sources of energy introduces uncertainty fromstigply side. This is an
important addition to the model because it enables for the firg tomintegrate the
characteristics of a renewable source of energy into an leguiti modeling approach of
electricity markets. In so doing, we also discuss the impdicatof a change in the industry

structure due to the expansion of wind power capacity and geograghiegdification of
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wind power. The theoretical part of the study suggests that stesisnay be fundamental

for modeling wind-integrated markets.

Our third contribution is related to the fact that wind power fateg provides essential
information for traders. The information of future availability ahevpower is used to form
expectations regarding spot market and risk management decisionabilityeto simulate
this information is necessary for modeling traders’ behavicurately in the day-ahead
markets. We introduce a novel methodology that accounts for the jainbuwlion of wind
speed and wind speed forecast for modeling the conditional distnbati regional wind
power at the time of trading forwards. The simulation of regiomald power requires
consideration of wind speed spatial correlation. Local wind speed tawsddescribed best
by a Weibull distribution. However, so far researchers werayusity approximations of the
Weibull distribution in simulating the distribution of regional wind powEhis is mainly
because there is no a natural way to extend the case of a urivfabull to the
multivariate case. For the purpose of imposing spatial correlagomake use of a technique
introduced by Iman and Conover (1982). This technique is distribution freeefoieeit has
a clear advantage for considerations of simulating regional wiedds Our example in
chapter 5 shows how to go about modeling the distribution of regional pawer supply

starting with a fitted Weibull distribution to describe the distribution of locativeipeed.

The computational experiment in chapter 6 provides intuition regafdinge expansion of
wind power capacity. The outcomes in wind-integrated electncdykets depend to a great
extent on the industry structure and the distribution of wind power outptlte region.

Relatively more concentrated electric industries are expactgénerate higher profits for
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IPPs as wind penetration rate increases. In the case tlmaiPRilso the owners of wind
power capacity the integration of wind power would enhance their rsignificantly
compare to the case that wind capacity is owned by compdiiting. Also, we show that
these excess profits are generated by inefficient emplatyafeenergy resources. In periods
that wind penetration rate approaches the rated capacity IBHssar likely to withhold
capacity. This is true because in this case IPPs competemallarsresidual demand. The
main impact of wind diversification is the ability of wind energg,an uncontrolled source
of power, to reduce IPPs market power. Our results show that extiteene case that wind
power is fully correlated realizations of high wind power supplyeheelatively high
probability. Under this circumstance, IPPs compete more aggressicalydeetheir ability to
manipulate market prices is relatively low. If wind is Isgstially correlated the likelihood
of high wind penetration rate is lower therefore residual densarelatively higher which in

turn allows IPPs to exercise more market power.

Futureresearch

A possible extension of the model would examine the impact of develbpiter batteries
for energy storage. Making the storage of electricity econolyie@ble will have two
significant impacts. First, from regulation perspective the paystem would be able to
handle the variation of wind energy better therefore it would be pessitihtegrate more
wind power capacity to the system. Second, storage would have taimpact on electricity
pricing. It is expected that the batteries would not be used iimat but only when the spot

price is high enough to justify the cost of storage. In order fonmgdel to account for this,

www.manaraa.com



170

one would need to incorporate a truncated distribution for the spot prisecdrnésponds to
the idea that expected spikes in demand can be met by power pracldzese load periods
when the cost of generating power is relatively low. With an uppeoidhe spot price,
demand for hedging risk via forward contracts is reduced. ¥&sat, it is not just that the
expected spot price of electricity is lower, but producers fatomger demand curve for

forwards would have less incentive to withhold generation capacity.

Another extension for our model may include investments decisionséhpewer capacity.
This would allow performing a full welfare analysis of the problem in hand. Cuitsesake

it obvious that there are large welfare implications for potitgt support wind power
capacity. Nowadays, wind energy enjoys considerable public supporfadththat global
expansion of wind power is being subsidized by consumers makesgjubsiion most
relevant. Our study shows that in addition to lowering elestrjarices, wind power may
help diminish market power. A complete welfare analysis méipal¢he conditions under
which public support is required to correct for a market failure widt are the
circumstances in which subsidizing wind power becomes only a questioncarine

redistribution.

Lastly, the current design of electricity markets is based omtbesettlement process (i.e.
day-ahead and spot markets). With considerable amount of wind powertgaipagy be
required to reconsider the time for trading forward contrdétsecasting load at the day-
ahead market is relatively accurate, but it is still inefficient tedast the availability of wind
power for more than several hours ahead. Therefore, in marke@ctteahmodate a large

share of wind power it may be better to consider a new gaterelésr trade in electricity

www.manaraa.com



171

forwards. Our model can be used for this purpose as long as forggaistaisions of load
and wind power at the proposed time of trading forwards are known. Howsah an
analysis should take into consideration the system constraints awdstseof scheduling
conventional generators closer to the time of the delivery period. Bhesdd be added to

the model as it is beyond the scope of our study.
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Appendix

Appendix 1. Contract For Differences

The stochastic nature of load gives rise to realizations wdereal electricity demand is
lower than the amount settled for delivery via forward contractshigcase the excess
amount cannot and will not be produced for physical and economical reRégysgally, the
excess amount causes transmission and reliability problems power system. These and
the associated costs are not treated in this study. Economsealiys of electricity cannot
characterize equilibrium in electricity markets. Therefore, woald expect that a financial
settlement which enables the buy-out of surplus be part ofieligcinarket operation. Next,
we show why a Contract for Differences (CFD) in particatay be an instrument to solve

for the missing market problem and eliminate surplus of power supply.

LSE’s willingness to resell excess forward contracts is obveanuse electricity cannot be
economically stored. For an IPP firm, we compare the economicfdayaf generating the
volume traded via forward contracts versus generating the eratived load with
accordance to a CFD settlement. Recall that in the evenlotthhappens to be lower than
the amount scheduled in advance the supply curve corresponds to the cosirefedficient
production regime. This curve is depicted in figure 3FhyThe less efficient production

regime of a higher load realization is depicted by the portion obtipply curve denoted
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asSs. Also in the figurex™ andx denote the amounts of power traded via forward contracts

and a (lower) realized amount which a particular LSE responsible to delipectigsly.

Generating the entire amount traded in advance, the IPP is paidriveed pricePg. In
figure 33 we depicted®, as the competitive price, assuming for now that there are no
forward premiums in expectations (we relax that assumptior).latetice that regardless of
the existence of a CFD, the illustrated realization providesRRewith an extra producer
surplus ofPrACP, (compare to the standard surplus created by the spotPprideload is
produced up to the entire volume traded via forward contragtsgoincides with the
marginal cost and the ard®C is added to the producer surplus. On the other hand, if the
IPP can buy back the excess contracts for the (expected) spattpeace”, the added

producer surplus is the arABCD > ABC.

For the case of positive forwards premium, simply incrégsé& show that for the same
level of x* the producer surplus will be larger than in the case of zero preminm
expectations. In solving the model we showed that negative premmuempéctations are not
possible in this market. Therefore, it is clear that both L&tsIPPs benefit from trading a
CFD. Thus we establish that a financial settlement suehGIsD is expected to be part of a

market clearing condition.

% Assuming that the spot price is a benchmark faditry excess supply is appropriate since in reatiyket
participants balance quantities in the spot markets
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Figure 33: The two-settlement process in the case oftoaing
forward contracts
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Appendix 2: SOC for the | PPs problem

The second derivative Gt with respect to the number of forward contracts is

M =m i
Zm: 1,m=i ar tqr

azM aZPF(') . aPF(') aP (') ~
— = gk +2——=— f Si fx (X|X)dx
0qr. 0qr qr qr
v a. [dg aP.() [dq
+ j ——Sx(—qi—1>+ S(l.)x<il.—1>
N o M \oqp 0qr 2qr
Ym=1m=idF T4F (235)
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aql ] ] aqu .
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Notice that
1) LPEO _  ang 29— o,
qy oqf

Zanzl,miiq?}"'q;‘ dPs(-) G _ . . .
2) [ WfX(X|X)dX—O, which is to say that in the event that no
F

additional generators are turned on after the forwards markietai®d the spot price

is not affected by the marginal forward contract.

Therefore we can write
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which is negative for angositive integers olN and M. Therefore,M is strictly concave

in g%, thus we know that if there is an interior symmetric solution it has to be unique.
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Appendix 3: Wind turbine used in this study
The power curve of a wind turbine used throughout this study is modeled in attemptd¢o mim

the characteristics of a particular commercial 1.5 MW wind turbine.

Table 7: Wind turbine technical data

Rated power (RP) 1,500 kW
Cut-in wind speed 3.5 m/s
Rated wind speed 14 m/s
Cut-out wind speed 25 m/s
Rotor diameter 77m

Hub height 80 m

The turbine’s output is expressed as

0 lf v; > 25

where the function describing the efficiency coefficient is

() if 14=v;>35
YY) =4 1 if 25>v;>14 (3.14)
0 else

and ®(v;) is a normal cumulative density function (cdf) to be fitted by ®y¢he power

curve of the desired wind turbine.
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In figure 19 we depict a power curve generated by using a naahalith mean 7.9 and
variance 2.2. This fitted power curve is depicted in chapter 3 and aisg bsed for

numerical purposes in the rest of this study.

Commercial power curve Power curve fitted by eye
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Figure 34: Fitted power curve of a 1.5MW wind turbine to be used in this study
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